Novel One-Degree of Freedom Helix Architecture for Additive Manufacturing
More details
Hide details
Nantes Université, Ecole Centrale Nantes, CNRS, GeM, UMR 6183, F-44000 Nantes, France
Tugdual Le Néel   

Nantes Université, Ecole Centrale Nantes, CNRS, GeM, UMR 6183, F-44000 Nantes, France
Submission date: 2022-05-04
Final revision date: 2022-07-15
Acceptance date: 2022-07-20
Online publication date: 2022-08-19
Journal of Machine Engineering 2022;22(3)
Additive manufacturing has been relying on conventional machinery architecture. Conventionally, the architecture used is a Cartesian set-up. The X-Y-Z axis move independently to move the tool on the X-Y plan and increment the Z-axis when the layer is finished. The machine architecture in this paper simplifies the design by constraining the machine to have solely one-degree of freedom. One degree of freedom is also known as a helix linkage. If individually controlled tools are placed all along the rotating arm, then this movement allows an opportunity to deposit material in a single sweeping motion. To increase furthermore the output, multiple arms can be added at a fixed angle. Finally, the predictive motion of the multiple helix machines can be synchronized to create collaboratively a bigger part. This type of manufacturing process has potential applications in binder jetting, material jetting, and selective laser sintering.
HASCOET J., MOGNOL P., Le NEEL A.T., 2018, Procédé et Dispositif de Fabrication Additive Par Agglomération D’un Matériau Granulaire, FR3083472.
HASCOET J.-Y., MOGNOL P., Le NEEL A.T., 2018, Dispositif et Procédé de Dépose D’un Matériau Granulaire Pour la Fabrication Additive, FR3083473.
Le NEEL T.A., MOGNOL P., and HASCOET J.-Y., 2018, A Review On Additive Manufacturing of Sand Molds by Binder Jetting and Selective Laser Sintering, Rapid Prototyp. J., 24/8, 1325–1336. DOI: 10.1108/RPJ-10-2016-0161.
Le NEEL T. A., MOGNOL P., HASCOET J.-Y., 2018, Design Methodology for Variable Shell Mould Thickness and Thermal Conductivity Additively Manufactured, Weld. World, 62/5, 1059–1072, DOI: 10.1007/s40194-018-0598-2.
Le NEEL T.A., MOGNOL P., HASCOET J.-Y., 2018, Design for Additive Manufacturing: Multi Material Sand Mold, Rapid TCT.
GORSKI F., WICHNIAREK R., KUCZKO W., ANDRZEJEWSKI J., 2015, Experimental Determination of Critical Orientation of ABS Parts Manufactured Usin Fused Deposition Modelling Technology, J. Mach. Eng., 15/4, 121–132.
MATSI B., SONK K., OTTO T., ROOSIMÖLDER L., 2009, Increasing of rapid prototyping performance by 3D printing technologies, J. Mach. Eng., 9/1, 121–129.
WALTHER M., SEWOHL A., SCHLEGEL H., NEUGEBAUER R., 2017, Trajectory Planning for Kinematically Redundant Robots Using Jacobi Matrix - An Industrial Implemantation, J. Mach. Eng., 17/3, 24–35.
GOODRIDGE R., ZIEGELMEIER S., 2017, Powder bed fusion of polymers, Elsevier Ltd.
LAUNHARDT M., et al., 2016, Detecting Surface Roughness on SLS Parts with Various Measuring Techniques, Polym. Test., 53, 217–226. DOI: 10.1016/j.polymertesting.2016.05.022.
GEBHARDT A., SCHMIDT F. M., HÖTTER J. S., SOKALLA W., SOKALLA P., 2010, Additive Manufacturing by Selective Laser Melting: The Realizer Desktop Machine and its Application for the Dental Industry, Phys. Procedia, 5/2, 543–549, DOI: 10.1016/j.phpro.2010.08.082.
Parameterization of StallGuard2(tm) & CoolStep(tm), AppNotes/AN002-StallGuard2.pdf, (accessed Apr. 26, 2022).
GOEHRKE S.A., 2017, 3D Printing Industry Guru Leads Development of First Commercial Robotic 3D Printer,, (accessed Apr. 27, 2022).
ExOne, “Sand 3D Printers,” 2022., (acces sed Jul. 01, 2022).
V. AG, Industrial 3D Printing, 2020, VJET-Industrial-3D-Printing, Online Available: (February-2020).pdf.
V. AG, Sand 3D Printer 3D Sand Printing for Casting Molds & Cores, 2022,, (accessed Jul. 01, 2022).
KASPRZAK M., 2015., Design and Implementation of Wireless Module Based on ZigBee for Applications in Machine Tools, J. Mach. Eng., 15/4, 133-143.
PETTIJOHN F.J., 1975, Sedimentary Rocks, Third Edition, Geosci. Canada, 2/4, 627,.