Operator 5.0: A Survey on Enabling Technologies and a Framework for Digital Manufacturing Based on Extended Reality
 
More details
Hide details
1
Department of Mechanical Engineering and Aeronautics, University of Patras, Rio Patras, 26504 Greece, Laboratory for Manufacturing Systems and Automation (LMS), Greece
 
 
Submission date: 2022-01-03
 
 
Final revision date: 2022-03-03
 
 
Acceptance date: 2022-03-06
 
 
Online publication date: 2022-03-08
 
 
Publication date: 2022-03-30
 
 
Corresponding author
Dimitris Mourtzis   

Department of Mechanical Engineering and Aeronautics, University of Patras, Rio Patras, 26504 Greece, Laboratory for Manufacturing Systems and Automation (LMS), University of Patras, Rio Patras, 26504, Patra/Achaia, Greece
 
 
Journal of Machine Engineering 2022;22(1):43-69
 
KEYWORDS
TOPICS
ABSTRACT
The industrial landscape is undergoing a series of fundamental changes, because of the advances in cutting-edge digital technologies. Under the framework of Industry 4.0 engineers have focused their effort on the development of new frameworks integrating digital technologies such as Big Data Analytics, Digital Twins, Extended Reality, and Artificial Intelligence, to upscale modern manufacturing systems, reduce uncertainties, and cope with the increased market volatility. However, in the upcoming industrial revolution, i.e., Industry 5.0, the research focus will be directed towards the new generation of human operators, the Operator 5.0. The purpose of this paper is to investigate the key technologies that will be the drivers towards the realization of the Operator 5.0 and to highlight the key challenges. Additional contribution is the proposal of a framework for the training and support of shopfloor technicians based on the utilization of Mixed Reality for manufacturing processes.
 
REFERENCES (91)
1.
MOURTZIS D., DOUKAS M., 2014, The Evolution of Manufacturing Systems: from Craftsmanship to the Era of Customization, in Handbook of Research on Design and Management of Lean Production Systems, 1–29. IGI Global.
 
2.
ELMARAGHY H., MONOSTORI L., SCHUH G., ELMARAGHY W. 2021., Evolution and Future of Manufacturing Systems, CIRP Annals, 70/2, 635–658.
 
3.
BATCHELOR R., 1994, Henry Ford, Mass Production, Modernism, and Design (Vol. 1). Manchester University Press.
 
4.
ALIZON F., SHOOTER S.B., SIMPSON T.W., 2008, Henry Ford and the Model T: Lessons for Product Platforming and Mass Customization, In International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, 43291, 59–66.
 
5.
CHRYSSOLOURIS G., 2013, Manufacturing Systems: Theory and Practice, Springer Science & Business Media.
 
6.
ROMERO D., BERNUS P., NORAN O., STAHRE J., FAST-BERGLUND A., 2016, The Operator 4.0: Human Cyber-Physical Systems & Adaptive Automation Towards Human-Automation Symbiosis Work Systems, IFIP International Conference on Advances, Production Management Systems, Springer, Cham, 677–686.
 
7.
MATTSSON S., FAST-BERGLUND A., LI D., THORVALD P., 2020, Forming a Cognitive Automation Strategy for Operator 4.0 in Complex Assembly, Computers & Industrial Engineering, 139, 105360.
 
8.
ROMERO D., WUEST T., STAHRE J., GORECKY D., 2017, Social Factory Architecture: Social Networking Services and Production Scenarios Through the Social Internet of Things, Services and People for the Social Operator 4.0, IFIP Advances in Information and Communication Technology, 513, 265-273.
 
9.
TORRES M.Y., NADEAU, S., 2020, Operator 4.0 In Manufacturing: Trends, Potential Technologies and Future Perspectives, Conference: Frühjahrskongress der Gesellschaft für Arbeitswissenschaft, March 16-18, At: Berlin, Germany.
 
10.
WORLD ECONOMIC FORUM, 2020, The Future of Jobs Report 2020, Geneva: World Economic Forum.
 
11.
VOGEL-HEUSER B., HESS D., 2016, Guest Editorial: Industry 4.0–Prerequisites and Visions, IEEE Trans. Autom. Sci. Eng., 13/2, 411–413.
 
12.
BAUERNHANS T., VOGEL-HEUSER B., TEN HOMPEL M., 2017, Allgemeine Grundlagen, Handbuch Industrie 4.0 Bd.4. Springer; ISBN: 978-3-662-53254-53256.
 
13.
VOGEL-HEUSER B., BAYRAK G., FRANK U., 2012, Forschungsfragen in “Produktionsautomatisierung der Zukunft”, Diskussionspapier für die acatech Projektgruppe ProCPS – Production CPS, acatech Materialien, Deutsche Akademie der Technikwissenschaften.
 
14.
KAGERMANN H., LUKAS W-D., WAHLSTER W., 2011, Industrie 4.0: Mit dem Internet der Dinge auf dem Weg zur 4. industriellen Revolution, VDI Nachrichten, http://www.vdi-nachrichten.com....
 
15.
WANG S., WAN J., ZHANG D., LI D., ZHANG C., 2016, Towards Smart Factory for Industry 4.0: A Self-Organized Multi-Agent System with Big Data Based Feedback and Coordination, Comput. Netw., 101, 158–68.
 
16.
ZHONG R.Y., XU X., KLOTZ E., NEWMAN S.T., 2017, Intelligent Manufacturing in the Context of Industry 4.0: a Review, Engineering, 3/5, 616–30.
 
17.
BENOTSMANE R., KOVACS G., DUDAS L., 2019. Economic, Social Impacts and Operation of Smart Factories in Industry 4.0 Focusing on Simulation and Artificial Intelligence of Collaborating Robots, Social Sciences, 8/5, 143.
 
18.
BREQUE M., DE NUL L., PETRIDIS A., 2021, Industry 5.0: Towards a Sustainable, Human-Centric and Resilient European Industry, Luxembourg, LU: European Commission, Directorate-General for Research and Innovation.
 
19.
EUROPEAN ECONOMIC AND SOCIAL COMMITTEE., 2021, Industry 5.0, Available online: https://ec.europa.eu/info/rese....
 
20.
MOURTZIS D., 2021, Towards the 5th Industrial Revolution: A Literature Review and a Framework for Process Optimization Based on Big Data Analytics and Semantics, Journal of Machine Engineering, 21/3, 5–39.
 
21.
LONGO F., PADOVANO A., UMBRELLO S., 2020, Value-Oriented and Ethical Technology Engineering in Industry 5.0: a Human-Centric Perspective for the Design of the Factory of the Future, Appl Sci., 10/12, 4182.
 
22.
XU X., 2017, Machine Tool 4.0 for the New Era of Manufacturing, Int. J. Adv. Manuf. Technol. 92, 1893–1900.
 
23.
LIU C., VENGAYIL H., ZHONG Y.R., XU X., 2018, A Systematic Development Method for Cyber-Physical Machine Tools, Journal of Manufacturing Systems, 48, 13–24.
 
24.
SCHÜTZE A., HELWIG N., SCHNEIDER T., 2018, Sensors 4.0–Smart Sensors and Measurement Technology Enable Industry 4.0, Journal of Sensors and Sensor systems, 7/1, 359–371.
 
25.
FLORES Ε., XU X., LU Y., 2020, Human Cyber-Physical Systems: A Skill-Based Correlation Between Humans and Machines, IEEE 16th International Conference on Automation Science and Engineering (CASE), 1313–1318.
 
26.
MOURTZIS D., 2020, Machine Tool 4.0 in the Era of Digital Manufacturing, 32nd European Modeling & Simulation Symposium, DOI: 10.46354/i3m.2020.emss.060.
 
27.
HWANG S.L., SALVENDY G., 1988, Operator Performance and Subjective Response in Control of Flexible Manufacturing Systems, Work & Stress, 2/1, 27–39.
 
28.
ELMARAGHY H., MONOSTORI L., SCHUH G., ELMARAGHY W., 2021, Evolution and Future of Manufac-Turing Systems, CIRP Annals, 70/2, 635–658.
 
29.
SHARIT J., SALVENDY G., 1982, External and Internal Intentional Environments II. Reconsideration of the Relationship Between Sinus Arrhythmia and Information Load, Ergonomics, 25/2, 121–132.
 
30.
HWANC S.L., BARFIELD W., CHANC T.C., SALVENDY G., 1984, Integration of Humans and Computers in the Operation and Control of Flexible Manufacturing Systems, International JoumaI of Production Research, 22, 841–856.
 
31.
PONSA ASENSIO P., VILANOVA R., AMANTE GARCIA, B., 2011. Human Intervention and Interface Design in Automation Systems, International Journal of Computers, Communications & Control, 6/1, 166–174.
 
32.
REXROTH: A BOSCH COMPANY, 2022, First Connected Industry Line on-Stream in Daily Production, Available online at: https://www.boschrexroth.com/e... (Accessed on 03/03/2022).
 
33.
SYLLA N., BONNET V., COLLEDANI F., FRAISSE P., 2014, Ergonomic Contribution of ABLE Exoskeleton in Automotive Industry, Int. J. of Industrial Ergonomics, 44/4, 475–481.
 
34.
SATISFACTORY (A Collaborative and Augmented-Enabled Ecosystem for Increasing Satisfaction and Working Experience in Smart FACTORY Environments), http://satisfactory-project.eu....
 
35.
VFF (Holistic, extensible, scalable and standard Virtual Factory Framework), http://www.vff-project.eu/.
 
36.
MYERS K., BERRY P., BLYTHE J., CONLEY K., GERVASIO M., MCGUINNESS D.L., et al., 2007, An Intelligent Personal Assistant for Task and Time Management, AI Magazine, 28/2, 47–61.
 
37.
LIAA (Lean Intelligent Assembly Automation), http://www.project-leanautomat....
 
38.
WUEST T., HRIBERNIK K., THOBEN K.-D., 2012, Can a Product Have a Facebook? A New Perspective on Product Avatars in Product Lifecycle Management, Rivest, L., Bouraz, A. & Louhichi, B. (Eds.), PLM 2012, IFIP AICT 388, Heidelberg Berlin, Springer, 400–410.
 
39.
WUEST T., WEIMER D., IRGENS C., THOBEN K.-D., 2016, Machine Learning in Manufacturing: Advantages, Challenges and Applications, Production & Manufacturing Research, 4/1,.
 
40.
GAZZANEO L., PADOVANO A., UMBRELLO S., 2020, Designing Smart Operator 4.0 For Human Values: A Value Sensitive Design Approach, Procedia Manufacturing, 42, 219–226.
 
41.
ROMERO D., WUEST T., KEEPERS M., CAVUOTO L.A., MEGAHED F.M., 2021, Smart Wearable and Collaborative Technologies for the Operator 4.0 in the Present and Post-COVID Digital Manufacturing Worlds, ASTM International, 5/1, Coden: SSMSCY.
 
42.
GORECKY D., SCHMITT M., LOSKYLL M., ZÜHLKE D., 2014, Human-Machine-Interaction in the Industry 4.0 Era, 12th IEEE International Conference on Industrial Informatics, 289–294.
 
43.
HANCOCK P.A., JAGACINSKI R.J., PARASURAMAN R., WICKENS C.D., WILSON G.F., KABER, D.B., 2013, Human-Automation Interaction Research: Past, Present and Future, Ergonomics in Des. 21/2, 9–14.
 
44.
KASSNER L., HIRMER P., WIELAND M., STEIMLE F., KÖNIGSBERGER J., MITSCHANG B., 2017, The Social Factory: Connecting People, Machines and Data in Manufacturing for Context Aware Exception Escalation, Proceedings of the 50th Hawaii International Conference. on System Sciences, 1673–1682.
 
45.
BAYGIN M., YETIS H., KARAKOSE M., AKIN E., 2016, Effect Analysis of Industry 4.0 to Higher Education, Proceedings of the 15th International Conference on Information Technology Based Higher Education and Training (ITHET), Istanbul, Turkey, IEEE, 1–4, 16502968.
 
46.
MOURTZIS D., PANOPOULOS N., ANGELOPOULOS J., ZYGOMALAS S., DIMITRAKOPOULOS, G., STAVROPOULOS P., 2021, A Hybrid Teaching Factory Model for Supporting the Educational Process in COVID-19 Era, Procedia CIRP, 104, 1626–1631.
 
47.
PERERA C., LIU C.H., JAYAWARDENA S., 2015, The Emerging Internet of Things Marketplace from an Industrial Perspective: A Survey, IEEE Trans. Emerg. Top. Comput. 3/4, 585–598.
 
48.
ROMERO D., NORAN O., STAHRE J., BERNUS P., FAST-BERGLUND A., 2015, Human Cyber-Physical Systems and Adaptive Automation Towards Human-Automation Symbiosis Work Systems, Nääs S. (ed.), APMS, IAICT, 488, 677–686, Springer, Cham, DOI: 10.1007/978-3-319-22759-7_64.
 
49.
ROMERO D., NORAN O., STAHRE J., BERNUS P., FAST-BERGLUND A., 2015, Towards a Human-Centred Reference Architecture for Next Generation Balanced Automation Systems: Human-Automation Symbiosis, Umeda S., Nakano M., Mizuyama H., Hibino H., Kiritsis D., Cieminski G. (eds.), APMS, IAICT, 460, 556–566, Springer, Cham, DOI: 10.1007/978-3-319-22759-7_64.
 
50.
ZHANG C., XI J., YANG X., 2008, An Architecture for Intelligent Collaborative Systems Based on Multi-Agent, 12th International Conference on CSCWD, 10042669, Xi'an, China, DOI: 10.1109/CSCWD.2008.4537008.
 
51.
INAGAKI T., 2003, Adaptive Automation: Sharing and Trading of Control, Handb. Cogn. Task Des., 8, 147–169.
 
52.
RUTH K., ITO Y., 2018, Flexible-Intelligent and Smart Factory Systems, MTEF Research Guide Series No. 1, Machine Tool Engineering Foundation, Available at: https://www.kousakukikai-zaida....
 
53.
DOLGUI A., IVANOV D., PERON M., SGARBOSSA F., 2022, Expected Trends in Production Networks for Mass Personalization in the Cloud Technology Era, Design and Operation of Production Networks for Mass Personalization in the Era of Cloud Technology, 13–37.
 
54.
MOURTZIS D., 2022, The Mass Personalization of Global Networks, Design and Operation of Production Networks for Mass Personalization in the Era of Cloud Technology, 79–116.
 
55.
MOURTZIS D., ANGELOPOULOS J., PANOPOULOS N., 2021, Robust Engineering for the Design of Resilient Manufacturing Systems, Applied Sciences, 11/7, 3067, https://doi.org/10.3390/app110....
 
56.
HOLLNAGEL E.P., 2011, The Scope of Resilience Engineering, Resilience Engineering in Practice: Guidebook A., Hollnagel E., et al. (Eds.), 2011, Aldershot, UK: Ashgate.
 
57.
KUSIAK A., 2020, Open Manufacturing: A Design-for-Resilience Approach, Production Research, 58/15, 4647–4658.
 
58.
ROMERO D., STAHRE J., et al., 2016, Towards an Operator 4.0 Typology: A Human- Centric Perspective on the Fourth Industrial Revolution Technologies, 46th International Conference on Computers and Industrial Engineering, October 29–31, Tianjin, China.
 
59.
ROMERO D., STAHRE J., 2021, Towards the Resilient Operator 5.0: The Future of Work in Smart Resilient Manufacturing Systems, Procedia CIRP, 104, 1089–1094.
 
60.
JOHANSSON B., FASTH A., STAHRE J. et al., 2009, Enabling Flexible Manufacturing Systems by Using Level of Automation as Design Parameter, Winter Simulation Conference, IEEE, December 13–16, Austin, Texas, US.
 
61.
RAMDASI P., RAMDASI P., 2018, Industry 4.0: Opportunities for Analytics, IEEE PuneCon, Pune, India, 1–5.
 
62.
MADNI A.Z., JACKSON S., 2009, Towards a Conceptual Framework for Resilience Engineering, IEEE Systems Journal, 3/2, 181–191.
 
63.
NAHAVANDI S., 2019, Industry 5.0 – A Human-Centric Solution, Sustainability, 11/16, 4371.
 
64.
UEDA K., 1992, An Approach to Bionic Manufacturing Systems Based on DNA-Type Information, Proc. of the ICOOMS’92, 303–308.
 
65.
MALSHE A., RAJURKAR K., SAMANT A., NOERGAARD-HANSEN H., BAPAT S., JIANG W., 2013, Bio-inspired Surfaces for Advanced Applications, CIRP Annals, 2/2, 607–628.
 
66.
BYRNE G., DIMITROV D., MONOSTORI L., TETI R., VAN HOUTEN F., WERTHEIM R., 2018, Biologicalisation: Biological Transformation in Manufacturing, CIRP Journal of Manufacturing Science and Technology, 21, 1–32.
 
67.
WEGENER K., WEIKERT S., MAYR J., MAIER M., ALI AKBARI V.O., POSTEL M., 2021, Operator Integrated–Concept for Manufacturing Intelligence, Journal of Machine Engineering, 21/4, 5–28.
 
68.
SOWE S.K., SIMMON E., ZETTSU K., DE VAULX F., BOJANOVA I., 2016, Cyber-Physical-Human Systems: Putting People in the Loop, IT Professional, 18/1, 10–13.
 
69.
ZHOU J., ZHOU Y., WANG B., ZANG J., 2019, Human–Cyber–Physical Systems (Hcpss) in The Context of New-Generation Intelligent Manufacturing, Engineering, 5/4, 624–636.
 
70.
PATHAK P., PAL P.R., SHRIVASTAVA M., ORA P., 2019, Fifth Revolution: Applied Ai & Human Intelligence with Cyber Physical Systems, International Journal of Engineering and Advanced Technology, 8/3, 23–27.
 
71.
XU X., LU Y., VOGEL-HEUSER B., WANG L., 2021, Industry 4.0 and Industry 5.0–Inception, Conception and Perception, Journal of Manufacturing Systems, 61, 530–535.
 
72.
WANG L., 2022, A Futuristic Perspective on Human-Centric Assembly, Journal of Manufacturing Systems, 62, 199–201.
 
73.
MOURTZIS D., MILAS N., ATHINAIOS N., 2018, Towards Machine Shop 4.0: A General Machine Model for CNC Machine-Tools Through OPC-UA, Procedia CIRP, 78, 301–306.
 
74.
MOURTZIS D., 2020, Simulation in the Design and Operation of Manufacturing Systems: State of the Art and New Trends, International Journal of Production Research, 58/7, 1927–1949.
 
75.
TAO F., ZHANG H., LIU A., NEE A.Y., 2018, Digital Twin in Industry: State-of-the-Art, IEEE Transactions on Industrial Informatics, 15/4, 2405–2415.
 
76.
MOURTZIS D., MILAS N., VLACHOU A., 2018, An Internet of Things-Based Monitoring System for Shop-Floor Control, Journal of Computing and Information Science in Engineering, 18/2, 021005, DOI: 10.1115/1.4039429.
 
77.
MOURTZIS D., ANGELOPOULOS J., PANOPOULOS N., 2021, Development of a Teaching Factory Framework Fusing a Virtual Simulated Machine Shop with the Physical Counterpart for Upscaling Human Machine Interface, Available at SSRN, 3859139.
 
78.
BIBEL W., 2010, General Aspects of Intelligent Autonomous Systems. Pratihar D.K., Jain L.C. (eds), Intelligent Autonomous Systems, Studies in Computational Intelligence, 275. Springer, Berlin, Heidelberg. DOI: 10.1007/978-3-642-11676-6_2.
 
79.
WICKENS C.D., HOLLANDS J.G., BANBURY S., PARASURAMAN R., 2015, Engineering Psychology & Human Performance, Psychology Press, Hove, UK.
 
80.
GOODRICH M.A., SCHULTZ A.C., 2008, Human–Robot Interaction: A Survey, Found, Trends Hum. Comput. Interact. 1, 203–275.
 
81.
HOSSNY M., NAHAVANDI S., CREIGHTON D., BHATTI A., 2010, Image Fusion Performance Metric Based on Mutual Information and Entropy Driven Quadtree Decomposition, Electron. Lett., 46, 1266–1268.
 
82.
SALEH K., HOSSNY M., NAHAVANDI S., 2018, Intent Prediction of Pedestrians via Motion Trajectories Using Stacked Recurrent Neural Networks, IEEE Trans. Intell. Veh., 3, 414–424.
 
83.
ABOBAKR A., HOSSNY M., NAHAVANDI S., 2018, A Skeleton-Free Fall Detection System from Depth Images Using Random Decision Forest, IEEE Syst. J. 2018, 12, 2994–3005.
 
84.
MILLER C.C., 2017, Evidence That Robots are Winning the Race for American Jobs, Available online: https://www.nytimes.com/2017/0....
 
85.
SUTHERLAND I.E., 1968, A Head-Mounted Three Dimensional Display, Proc. Fall Joint Comput. Conf., Dec., 757–764, DOI: 10.1145/1476589.1476686.
 
86.
FAST-BERGLUND A., GONG L., LI D., 2018, Testing and Validating Extended Reality (Xr) Technologies in Manufacturing, Procedia Manuf., 25, 31–38.
 
87.
MILGRAM P., TAKEMURA H., UTSUMI A., KISHINO F., 1994, Augmented Reality: A Class of Displays on the Reality-Virtuality Continuum, SPIE Proceedings, Telemanipulator and Telepresence Technologies, Boston, MA.
 
88.
AZUMA R.T., 1997, A Survey of Augmented Reality, Teleoperators & Virtual Environments, 6/4, 355–385.
 
89.
MOURTZIS D., ANGELOPOULOS J., PANOPOULOS N., 2020, A Framework for Automatic Generation of Augmented Reality Maintenance & Repair Instructions Based on Convolutional Neural Networks, Procedia CIRP, 93, 977–982.
 
90.
GONG L., FAST-BERGLUND A., JOHANSSON B., 2021, A Framework for Extended Reality System Development in Manufacturing, IEEE Access, 9, 24796–24813.
 
91.
EUROPEAN COMMISSION, 2021, Industry 5.0: Towards a Sustainable, Human- Centric and Resilient European Industry, URL: https://op.europa.eu/en/public... 1.
 
eISSN:2391-8071
ISSN:1895-7595
Journals System - logo
Scroll to top