Operator 5.0: A Survey on Enabling Technologies and a Framework for Digital Manufacturing Based on Extended Reality
 
More details
Hide details
1
Department of Mechanical Engineering and Aeronautics, University of Patras, Rio Patras, 26504 Greece, Laboratory for Manufacturing Systems and Automation (LMS), Greece
 
 
Submission date: 2022-01-03
 
 
Final revision date: 2022-03-03
 
 
Acceptance date: 2022-03-06
 
 
Online publication date: 2022-03-08
 
 
Publication date: 2022-03-30
 
 
Corresponding author
Dimitris Mourtzis   

Department of Mechanical Engineering and Aeronautics, University of Patras, Rio Patras, 26504 Greece, Laboratory for Manufacturing Systems and Automation (LMS), University of Patras, Rio Patras, 26504, Patra/Achaia, Greece
 
 
Journal of Machine Engineering 2022;22(1):43-69
 
KEYWORDS
TOPICS
ABSTRACT
The industrial landscape is undergoing a series of fundamental changes, because of the advances in cutting-edge digital technologies. Under the framework of Industry 4.0 engineers have focused their effort on the development of new frameworks integrating digital technologies such as Big Data Analytics, Digital Twins, Extended Reality, and Artificial Intelligence, to upscale modern manufacturing systems, reduce uncertainties, and cope with the increased market volatility. However, in the upcoming industrial revolution, i.e., Industry 5.0, the research focus will be directed towards the new generation of human operators, the Operator 5.0. The purpose of this paper is to investigate the key technologies that will be the drivers towards the realization of the Operator 5.0 and to highlight the key challenges. Additional contribution is the proposal of a framework for the training and support of shopfloor technicians based on the utilization of Mixed Reality for manufacturing processes.
 
REFERENCES (91)
1.
MOURTZIS D., DOUKAS M., 2014, The Evolution of Manufacturing Systems: from Craftsmanship to the Era of Customization, in Handbook of Research on Design and Management of Lean Production Systems, 1–29. IGI Global.
 
2.
ELMARAGHY H., MONOSTORI L., SCHUH G., ELMARAGHY W. 2021., Evolution and Future of Manufacturing Systems, CIRP Annals, 70/2, 635–658.
 
3.
BATCHELOR R., 1994, Henry Ford, Mass Production, Modernism, and Design (Vol. 1). Manchester University Press.
 
4.
ALIZON F., SHOOTER S.B., SIMPSON T.W., 2008, Henry Ford and the Model T: Lessons for Product Platforming and Mass Customization, In International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, 43291, 59–66.
 
5.
CHRYSSOLOURIS G., 2013, Manufacturing Systems: Theory and Practice, Springer Science & Business Media.
 
6.
ROMERO D., BERNUS P., NORAN O., STAHRE J., FAST-BERGLUND A., 2016, The Operator 4.0: Human Cyber-Physical Systems & Adaptive Automation Towards Human-Automation Symbiosis Work Systems, IFIP International Conference on Advances, Production Management Systems, Springer, Cham, 677–686.
 
7.
MATTSSON S., FAST-BERGLUND A., LI D., THORVALD P., 2020, Forming a Cognitive Automation Strategy for Operator 4.0 in Complex Assembly, Computers & Industrial Engineering, 139, 105360.
 
8.
ROMERO D., WUEST T., STAHRE J., GORECKY D., 2017, Social Factory Architecture: Social Networking Services and Production Scenarios Through the Social Internet of Things, Services and People for the Social Operator 4.0, IFIP Advances in Information and Communication Technology, 513, 265-273.
 
9.
TORRES M.Y., NADEAU, S., 2020, Operator 4.0 In Manufacturing: Trends, Potential Technologies and Future Perspectives, Conference: Frühjahrskongress der Gesellschaft für Arbeitswissenschaft, March 16-18, At: Berlin, Germany.
 
10.
WORLD ECONOMIC FORUM, 2020, The Future of Jobs Report 2020, Geneva: World Economic Forum.
 
11.
VOGEL-HEUSER B., HESS D., 2016, Guest Editorial: Industry 4.0–Prerequisites and Visions, IEEE Trans. Autom. Sci. Eng., 13/2, 411–413.
 
12.
BAUERNHANS T., VOGEL-HEUSER B., TEN HOMPEL M., 2017, Allgemeine Grundlagen, Handbuch Industrie 4.0 Bd.4. Springer; ISBN: 978-3-662-53254-53256.
 
13.
VOGEL-HEUSER B., BAYRAK G., FRANK U., 2012, Forschungsfragen in “Produktionsautomatisierung der Zukunft”, Diskussionspapier für die acatech Projektgruppe ProCPS – Production CPS, acatech Materialien, Deutsche Akademie der Technikwissenschaften.
 
14.
KAGERMANN H., LUKAS W-D., WAHLSTER W., 2011, Industrie 4.0: Mit dem Internet der Dinge auf dem Weg zur 4. industriellen Revolution, VDI Nachrichten, http://www.vdi-nachrichten.com....
 
15.
WANG S., WAN J., ZHANG D., LI D., ZHANG C., 2016, Towards Smart Factory for Industry 4.0: A Self-Organized Multi-Agent System with Big Data Based Feedback and Coordination, Comput. Netw., 101, 158–68.
 
16.
ZHONG R.Y., XU X., KLOTZ E., NEWMAN S.T., 2017, Intelligent Manufacturing in the Context of Industry 4.0: a Review, Engineering, 3/5, 616–30.
 
17.
BENOTSMANE R., KOVACS G., DUDAS L., 2019. Economic, Social Impacts and Operation of Smart Factories in Industry 4.0 Focusing on Simulation and Artificial Intelligence of Collaborating Robots, Social Sciences, 8/5, 143.
 
18.
BREQUE M., DE NUL L., PETRIDIS A., 2021, Industry 5.0: Towards a Sustainable, Human-Centric and Resilient European Industry, Luxembourg, LU: European Commission, Directorate-General for Research and Innovation.
 
19.
EUROPEAN ECONOMIC AND SOCIAL COMMITTEE., 2021, Industry 5.0, Available online: https://ec.europa.eu/info/rese....
 
20.
MOURTZIS D., 2021, Towards the 5th Industrial Revolution: A Literature Review and a Framework for Process Optimization Based on Big Data Analytics and Semantics, Journal of Machine Engineering, 21/3, 5–39.
 
21.
LONGO F., PADOVANO A., UMBRELLO S., 2020, Value-Oriented and Ethical Technology Engineering in Industry 5.0: a Human-Centric Perspective for the Design of the Factory of the Future, Appl Sci., 10/12, 4182.
 
22.
XU X., 2017, Machine Tool 4.0 for the New Era of Manufacturing, Int. J. Adv. Manuf. Technol. 92, 1893–1900.
 
23.
LIU C., VENGAYIL H., ZHONG Y.R., XU X., 2018, A Systematic Development Method for Cyber-Physical Machine Tools, Journal of Manufacturing Systems, 48, 13–24.
 
24.
SCHÜTZE A., HELWIG N., SCHNEIDER T., 2018, Sensors 4.0–Smart Sensors and Measurement Technology Enable Industry 4.0, Journal of Sensors and Sensor systems, 7/1, 359–371.
 
25.
FLORES Ε., XU X., LU Y., 2020, Human Cyber-Physical Systems: A Skill-Based Correlation Between Humans and Machines, IEEE 16th International Conference on Automation Science and Engineering (CASE), 1313–1318.
 
26.
MOURTZIS D., 2020, Machine Tool 4.0 in the Era of Digital Manufacturing, 32nd European Modeling & Simulation Symposium, DOI: 10.46354/i3m.2020.emss.060.
 
27.
HWANG S.L., SALVENDY G., 1988, Operator Performance and Subjective Response in Control of Flexible Manufacturing Systems, Work & Stress, 2/1, 27–39.
 
28.
ELMARAGHY H., MONOSTORI L., SCHUH G., ELMARAGHY W., 2021, Evolution and Future of Manufac-Turing Systems, CIRP Annals, 70/2, 635–658.
 
29.
SHARIT J., SALVENDY G., 1982, External and Internal Intentional Environments II. Reconsideration of the Relationship Between Sinus Arrhythmia and Information Load, Ergonomics, 25/2, 121–132.
 
30.
HWANC S.L., BARFIELD W., CHANC T.C., SALVENDY G., 1984, Integration of Humans and Computers in the Operation and Control of Flexible Manufacturing Systems, International JoumaI of Production Research, 22, 841–856.
 
31.
PONSA ASENSIO P., VILANOVA R., AMANTE GARCIA, B., 2011. Human Intervention and Interface Design in Automation Systems, International Journal of Computers, Communications & Control, 6/1, 166–174.
 
32.
REXROTH: A BOSCH COMPANY, 2022, First Connected Industry Line on-Stream in Daily Production, Available online at: https://www.boschrexroth.com/e... (Accessed on 03/03/2022).
 
33.
SYLLA N., BONNET V., COLLEDANI F., FRAISSE P., 2014, Ergonomic Contribution of ABLE Exoskeleton in Automotive Industry, Int. J. of Industrial Ergonomics, 44/4, 475–481.
 
34.
SATISFACTORY (A Collaborative and Augmented-Enabled Ecosystem for Increasing Satisfaction and Working Experience in Smart FACTORY Environments), http://satisfactory-project.eu....
 
35.
VFF (Holistic, extensible, scalable and standard Virtual Factory Framework), http://www.vff-project.eu/.
 
36.
MYERS K., BERRY P., BLYTHE J., CONLEY K., GERVASIO M., MCGUINNESS D.L., et al., 2007, An Intelligent Personal Assistant for Task and Time Management, AI Magazine, 28/2, 47–61.
 
37.
LIAA (Lean Intelligent Assembly Automation), http://www.project-leanautomat....
 
38.
WUEST T., HRIBERNIK K., THOBEN K.-D., 2012, Can a Product Have a Facebook? A New Perspective on Product Avatars in Product Lifecycle Management, Rivest, L., Bouraz, A. & Louhichi, B. (Eds.), PLM 2012, IFIP AICT 388, Heidelberg Berlin, Springer, 400–410.
 
39.
WUEST T., WEIMER D., IRGENS C., THOBEN K.-D., 2016, Machine Learning in Manufacturing: Advantages, Challenges and Applications, Production & Manufacturing Research, 4/1,.
 
40.
GAZZANEO L., PADOVANO A., UMBRELLO S., 2020, Designing Smart Operator 4.0 For Human Values: A Value Sensitive Design Approach, Procedia Manufacturing, 42, 219–226.
 
41.
ROMERO D., WUEST T., KEEPERS M., CAVUOTO L.A., MEGAHED F.M., 2021, Smart Wearable and Collaborative Technologies for the Operator 4.0 in the Present and Post-COVID Digital Manufacturing Worlds, ASTM International, 5/1, Coden: SSMSCY.
 
42.
GORECKY D., SCHMITT M., LOSKYLL M., ZÜHLKE D., 2014, Human-Machine-Interaction in the Industry 4.0 Era, 12th IEEE International Conference on Industrial Informatics, 289–294.
 
43.
HANCOCK P.A., JAGACINSKI R.J., PARASURAMAN R., WICKENS C.D., WILSON G.F., KABER, D.B., 2013, Human-Automation Interaction Research: Past, Present and Future, Ergonomics in Des. 21/2, 9–14.
 
44.
KASSNER L., HIRMER P., WIELAND M., STEIMLE F., KÖNIGSBERGER J., MITSCHANG B., 2017, The Social Factory: Connecting People, Machines and Data in Manufacturing for Context Aware Exception Escalation, Proceedings of the 50th Hawaii International Conference. on System Sciences, 1673–1682.
 
45.
BAYGIN M., YETIS H., KARAKOSE M., AKIN E., 2016, Effect Analysis of Industry 4.0 to Higher Education, Proceedings of the 15th International Conference on Information Technology Based Higher Education and Training (ITHET), Istanbul, Turkey, IEEE, 1–4, 16502968.
 
46.
MOURTZIS D., PANOPOULOS N., ANGELOPOULOS J., ZYGOMALAS S., DIMITRAKOPOULOS, G., STAVROPOULOS P., 2021, A Hybrid Teaching Factory Model for Supporting the Educational Process in COVID-19 Era, Procedia CIRP, 104, 1626–1631.
 
47.
PERERA C., LIU C.H., JAYAWARDENA S., 2015, The Emerging Internet of Things Marketplace from an Industrial Perspective: A Survey, IEEE Trans. Emerg. Top. Comput. 3/4, 585–598.
 
48.
ROMERO D., NORAN O., STAHRE J., BERNUS P., FAST-BERGLUND A., 2015, Human Cyber-Physical Systems and Adaptive Automation Towards Human-Automation Symbiosis Work Systems, Nääs S. (ed.), APMS, IAICT, 488, 677–686, Springer, Cham, DOI: 10.1007/978-3-319-22759-7_64.
 
49.
ROMERO D., NORAN O., STAHRE J., BERNUS P., FAST-BERGLUND A., 2015, Towards a Human-Centred Reference Architecture for Next Generation Balanced Automation Systems: Human-Automation Symbiosis, Umeda S., Nakano M., Mizuyama H., Hibino H., Kiritsis D., Cieminski G. (eds.), APMS, IAICT, 460, 556–566, Springer, Cham, DOI: 10.1007/978-3-319-22759-7_64.
 
50.
ZHANG C., XI J., YANG X., 2008, An Architecture for Intelligent Collaborative Systems Based on Multi-Agent, 12th International Conference on CSCWD, 10042669, Xi'an, China, DOI: 10.1109/CSCWD.2008.4537008.
 
51.
INAGAKI T., 2003, Adaptive Automation: Sharing and Trading of Control, Handb. Cogn. Task Des., 8, 147–169.
 
52.
RUTH K., ITO Y., 2018, Flexible-Intelligent and Smart Factory Systems, MTEF Research Guide Series No. 1, Machine Tool Engineering Foundation, Available at: https://www.kousakukikai-zaida....
 
53.
DOLGUI A., IVANOV D., PERON M., SGARBOSSA F., 2022, Expected Trends in Production Networks for Mass Personalization in the Cloud Technology Era, Design and Operation of Production Networks for Mass Personalization in the Era of Cloud Technology, 13–37.
 
54.
MOURTZIS D., 2022, The Mass Personalization of Global Networks, Design and Operation of Production Networks for Mass Personalization in the Era of Cloud Technology, 79–116.
 
55.
MOURTZIS D., ANGELOPOULOS J., PANOPOULOS N., 2021, Robust Engineering for the Design of Resilient Manufacturing Systems, Applied Sciences, 11/7, 3067, https://doi.org/10.3390/app110....
 
56.
HOLLNAGEL E.P., 2011, The Scope of Resilience Engineering, Resilience Engineering in Practice: Guidebook A., Hollnagel E., et al. (Eds.), 2011, Aldershot, UK: Ashgate.
 
57.
KUSIAK A., 2020, Open Manufacturing: A Design-for-Resilience Approach, Production Research, 58/15, 4647–4658.
 
58.
ROMERO D., STAHRE J., et al., 2016, Towards an Operator 4.0 Typology: A Human- Centric Perspective on the Fourth Industrial Revolution Technologies, 46th International Conference on Computers and Industrial Engineering, October 29–31, Tianjin, China.
 
59.
ROMERO D., STAHRE J., 2021, Towards the Resilient Operator 5.0: The Future of Work in Smart Resilient Manufacturing Systems, Procedia CIRP, 104, 1089–1094.
 
60.
JOHANSSON B., FASTH A., STAHRE J. et al., 2009, Enabling Flexible Manufacturing Systems by Using Level of Automation as Design Parameter, Winter Simulation Conference, IEEE, December 13–16, Austin, Texas, US.
 
61.
RAMDASI P., RAMDASI P., 2018, Industry 4.0: Opportunities for Analytics, IEEE PuneCon, Pune, India, 1–5.
 
62.
MADNI A.Z., JACKSON S., 2009, Towards a Conceptual Framework for Resilience Engineering, IEEE Systems Journal, 3/2, 181–191.
 
63.
NAHAVANDI S., 2019, Industry 5.0 – A Human-Centric Solution, Sustainability, 11/16, 4371.
 
64.
UEDA K., 1992, An Approach to Bionic Manufacturing Systems Based on DNA-Type Information, Proc. of the ICOOMS’92, 303–308.
 
65.
MALSHE A., RAJURKAR K., SAMANT A., NOERGAARD-HANSEN H., BAPAT S., JIANG W., 2013, Bio-inspired Surfaces for Advanced Applications, CIRP Annals, 2/2, 607–628.
 
66.
BYRNE G., DIMITROV D., MONOSTORI L., TETI R., VAN HOUTEN F., WERTHEIM R., 2018, Biologicalisation: Biological Transformation in Manufacturing, CIRP Journal of Manufacturing Science and Technology, 21, 1–32.
 
67.
WEGENER K., WEIKERT S., MAYR J., MAIER M., ALI AKBARI V.O., POSTEL M., 2021, Operator Integrated–Concept for Manufacturing Intelligence, Journal of Machine Engineering, 21/4, 5–28.
 
68.
SOWE S.K., SIMMON E., ZETTSU K., DE VAULX F., BOJANOVA I., 2016, Cyber-Physical-Human Systems: Putting People in the Loop, IT Professional, 18/1, 10–13.
 
69.
ZHOU J., ZHOU Y., WANG B., ZANG J., 2019, Human–Cyber–Physical Systems (Hcpss) in The Context of New-Generation Intelligent Manufacturing, Engineering, 5/4, 624–636.
 
70.
PATHAK P., PAL P.R., SHRIVASTAVA M., ORA P., 2019, Fifth Revolution: Applied Ai & Human Intelligence with Cyber Physical Systems, International Journal of Engineering and Advanced Technology, 8/3, 23–27.
 
71.
XU X., LU Y., VOGEL-HEUSER B., WANG L., 2021, Industry 4.0 and Industry 5.0–Inception, Conception and Perception, Journal of Manufacturing Systems, 61, 530–535.
 
72.
WANG L., 2022, A Futuristic Perspective on Human-Centric Assembly, Journal of Manufacturing Systems, 62, 199–201.
 
73.
MOURTZIS D., MILAS N., ATHINAIOS N., 2018, Towards Machine Shop 4.0: A General Machine Model for CNC Machine-Tools Through OPC-UA, Procedia CIRP, 78, 301–306.
 
74.
MOURTZIS D., 2020, Simulation in the Design and Operation of Manufacturing Systems: State of the Art and New Trends, International Journal of Production Research, 58/7, 1927–1949.
 
75.
TAO F., ZHANG H., LIU A., NEE A.Y., 2018, Digital Twin in Industry: State-of-the-Art, IEEE Transactions on Industrial Informatics, 15/4, 2405–2415.
 
76.
MOURTZIS D., MILAS N., VLACHOU A., 2018, An Internet of Things-Based Monitoring System for Shop-Floor Control, Journal of Computing and Information Science in Engineering, 18/2, 021005, DOI: 10.1115/1.4039429.
 
77.
MOURTZIS D., ANGELOPOULOS J., PANOPOULOS N., 2021, Development of a Teaching Factory Framework Fusing a Virtual Simulated Machine Shop with the Physical Counterpart for Upscaling Human Machine Interface, Available at SSRN, 3859139.
 
78.
BIBEL W., 2010, General Aspects of Intelligent Autonomous Systems. Pratihar D.K., Jain L.C. (eds), Intelligent Autonomous Systems, Studies in Computational Intelligence, 275. Springer, Berlin, Heidelberg. DOI: 10.1007/978-3-642-11676-6_2.
 
79.
WICKENS C.D., HOLLANDS J.G., BANBURY S., PARASURAMAN R., 2015, Engineering Psychology & Human Performance, Psychology Press, Hove, UK.
 
80.
GOODRICH M.A., SCHULTZ A.C., 2008, Human–Robot Interaction: A Survey, Found, Trends Hum. Comput. Interact. 1, 203–275.
 
81.
HOSSNY M., NAHAVANDI S., CREIGHTON D., BHATTI A., 2010, Image Fusion Performance Metric Based on Mutual Information and Entropy Driven Quadtree Decomposition, Electron. Lett., 46, 1266–1268.
 
82.
SALEH K., HOSSNY M., NAHAVANDI S., 2018, Intent Prediction of Pedestrians via Motion Trajectories Using Stacked Recurrent Neural Networks, IEEE Trans. Intell. Veh., 3, 414–424.
 
83.
ABOBAKR A., HOSSNY M., NAHAVANDI S., 2018, A Skeleton-Free Fall Detection System from Depth Images Using Random Decision Forest, IEEE Syst. J. 2018, 12, 2994–3005.
 
84.
MILLER C.C., 2017, Evidence That Robots are Winning the Race for American Jobs, Available online: https://www.nytimes.com/2017/0....
 
85.
SUTHERLAND I.E., 1968, A Head-Mounted Three Dimensional Display, Proc. Fall Joint Comput. Conf., Dec., 757–764, DOI: 10.1145/1476589.1476686.
 
86.
FAST-BERGLUND A., GONG L., LI D., 2018, Testing and Validating Extended Reality (Xr) Technologies in Manufacturing, Procedia Manuf., 25, 31–38.
 
87.
MILGRAM P., TAKEMURA H., UTSUMI A., KISHINO F., 1994, Augmented Reality: A Class of Displays on the Reality-Virtuality Continuum, SPIE Proceedings, Telemanipulator and Telepresence Technologies, Boston, MA.
 
88.
AZUMA R.T., 1997, A Survey of Augmented Reality, Teleoperators & Virtual Environments, 6/4, 355–385.
 
89.
MOURTZIS D., ANGELOPOULOS J., PANOPOULOS N., 2020, A Framework for Automatic Generation of Augmented Reality Maintenance & Repair Instructions Based on Convolutional Neural Networks, Procedia CIRP, 93, 977–982.
 
90.
GONG L., FAST-BERGLUND A., JOHANSSON B., 2021, A Framework for Extended Reality System Development in Manufacturing, IEEE Access, 9, 24796–24813.
 
91.
EUROPEAN COMMISSION, 2021, Industry 5.0: Towards a Sustainable, Human- Centric and Resilient European Industry, URL: https://op.europa.eu/en/public... 1.
 
 
CITATIONS (59):
1.
Manufacturing from Industry 4.0 to Industry 5.0
Sichao Liu, Jianjing Zhang, Shuming Yi, Robert Gao, Dimitris Mourtzis, Lihui Wang
 
2.
Supporting cognitive intelligence for smart manufacturing systems using HMI design: challenges and fundamental issues
Vivek Kant, Ishaan Nejeeb, Sachin Alya, Prakhar Jain, Ramesh Singh
Journal of Engineering Design
 
3.
Industry 5.0, towards an enhanced built cultural heritage conservation practice
Alejandro Jiménez Rios, Margarita L. Petrou, Rafael Ramirez, Vagelis Plevris, Maria Nogal
Journal of Building Engineering
 
4.
Advances in Production Management Systems. Production Management Systems for Volatile, Uncertain, Complex, and Ambiguous Environments
Sandra Mattsson, Martin Kurdve
 
5.
Toward sustainability and resilience with Industry 4.0 and Industry 5.0
Shohin Aheleroff, Huiyue Huang, Xun Xu, Ray Y. Zhong
Frontiers in Manufacturing Technology
 
6.
Extending factory digital Twins through human characterisation in Asset Administration Shell
Vincenzo Cutrona, Niko Bonomi, Elias Montini, Tamas Ruppert, Giacomo Delinavelli, Paolo Pedrazzoli
International Journal of Computer Integrated Manufacturing
 
7.
A Framework for Developing Educational Industry 4.0 Activities and Study Materials
Lasse Christiansen, Tommy Edvardsen Hvidsten, Jesper Hemdrup Kristensen, Jonas Gebhardt, Kashif Mahmood, Tauno Otto, Astrid Heidemann Lassen, Thomas Ditlev Brunoe, Casper Schou, Esben Skov Laursen
Education Sciences
 
8.
Advancing sustainable manufacturing: a systematic exploration of Industry 5.0 supply chains for sustainability, human-centricity, and resilience
Nicholas Dacre, Jingyang Yan, Regina Frei, M. K. S. Al-Mhdawi, Hao Dong
Production Planning & Control
 
9.
A systematic review of Industry 5.0 from main aspects to the execution status
Upinder Kumar, Mahender Singh Kaswan, Rakesh Kumar, Rekha Chaudhary, Jose Arturo Garza-Reyes, Rajeev Rathi, Rohit Joshi
The TQM Journal
 
10.
Augmented Reality in a Lean Workplace at Smart Factories: A Case Study
Ana C. Pereira, Anabela C. Alves, Pedro Arezes
Applied Sciences
 
11.
The potential of extended reality in Rural Education’s future – perspectives from rural educators
Xining Wang, Gareth W. Young, Muhammad Zahid Iqbal, Conor Mc Guckin
Education and Information Technologies
 
12.
Manufacturing from Industry 4.0 to Industry 5.0
Dimitris Mourtzis
 
13.
Measurement System for Operator 5.0: a Learning Fatigue Recognition based on sEMG Signals
Luca De Vito, Enrico Picariello, Francesco Picariello, Ioan Tudosa, Andrea Sbaragli, Gastone Pietro Rosati Papini, Francesco Pilati
2023 IEEE International Symposium on Medical Measurements and Applications (MeMeA)
 
14.
Industry 5.0 – Past, Present, and Near Future
João Barata, Ina Kayser
Procedia Computer Science
 
15.
An IoT-based and cloud-assisted AI-driven monitoring platform for smart manufacturing: design architecture and experimental validation
Bianca Caiazzo, Teresa Murino, Alberto Petrillo, Gianluca Piccirillo, Stefania Santini
Journal of Manufacturing Technology Management
 
16.
Industry 4.0 vs. Industry 5.0: Co-existence, Transition, or a Hybrid
Mariia Golovianko, Vagan Terziyan, Vladyslav Branytskyi, Diana Malyk
Procedia Computer Science
 
17.
Industry 5.0: A comprehensive insight into the future of work, social sustainability, sustainable development, and career
Luciano Gamberini, Patrik Pluchino
Australian Journal of Career Development
 
18.
Advances in Adaptive Scheduling in Industry 4.0
Dimitris Mourtzis
Frontiers in Manufacturing Technology
 
19.
Toward human-centered intelligent assistance system in manufacturing: challenges and potentials for operator 5.0
Christian Bechinie, Setareh Zafari, Lukas Kroeninger, Jaison Puthenkalam, Manfred Tscheligi
Procedia Computer Science
 
20.
Advances in Production Management Systems. Smart Manufacturing and Logistics Systems: Turning Ideas into Action
Goo-Young Kim, Donghun Kim, Sang Do Noh, Hong Ku Han, Nam Geun Kim, Yong-Shin Kang, Seung Hyun Choi, Dong Hyun Go, Jungmin Song, Dae Yub Lee, Hyung Sun Kim
 
21.
The Future of the Human–Machine Interface (HMI) in Society 5.0
Dimitris Mourtzis, John Angelopoulos, Nikos Panopoulos
Future Internet
 
22.
Corporate Practices: Policies, Methodologies, and Insights in Organizational Management
Adriana Milea, Lucian-Ionel Cioca
 
23.
Defect detection on optoelectronical devices to assist decision making: A real industry 4.0 case study
George P. Moustris, George Kouzas, Spyros Fourakis, Georgios Fiotakis, Apostolos Chondronasios, Abd Al Rahman M. Abu Ebayyeh, Alireza Mousavi, Kostas Apostolou, Jovana Milenkovic, Zoi Chatzichristodoulou, Erik Beckert, Jeremy Butet, Stéphane Blaser, Olivier Landry, Antoine Müller
Frontiers in Manufacturing Technology
 
24.
A comparative study for the assessment of marker-less mixed reality applications for the operator training
Agnese Brunzini, Marianna Ciccarelli, Mikhailo Sartini, Alessandra Papetti, Michele Germani
International Journal of Computer Integrated Manufacturing
 
25.
Industry 5.0: Prospect and retrospect
Jiewu Leng, Weinan Sha, Baicun Wang, Pai Zheng, Cunbo Zhuang, Qiang Liu, Thorsten Wuest, Dimitris Mourtzis, Lihui Wang
Journal of Manufacturing Systems
 
26.
Maintenance 5.0: Towards a Worker-in-the-Loop Framework for Resilient Smart Manufacturing
Alejandro Cortés-Leal, César Cárdenas, Carolina Del-Valle-Soto
Applied Sciences
 
27.
Digital Technologies in Modeling and Management
Baranidharan Subburayan
 
28.
Advances in Production Management Systems. Production Management Systems for Responsible Manufacturing, Service, and Logistics Futures
Jannick Fiedler, Omid Maghazei, Arne Seeliger, Torbjørn Netland
 
29.
Intelligent Sustainable Systems
Usman Ahmad Usmani, Ari Happonen, Junzo Watada
 
30.
Cobotics: The Evolving Roles and Prospects of Next‐Generation Collaborative Robots in Industry 5.0
Md. Mijanur Rahman, Fatema Khatun, Ismat Jahan, Ramprosad Devnath, Md. Al-Amin Bhuiyan, Shahram Payandeh
Journal of Robotics
 
31.
To be a cyborg or not: exploring the mechanisms between digital literacy and neural implant acceptance
Kerem Toker, Mine Afacan Fındıklı, Zekiye İrem Gözübol, Ali̇ Görener
Kybernetes
 
32.
Human Digital Twin, the Development and Impact on Design
Yu (Wolf) Song
Journal of Computing and Information Science in Engineering
 
33.
Product Lifecycle Management. PLM in Transition Times: The Place of Humans and Transformative Technologies
Jongpil Yun, Goo-Young Kim, Mahdi Sajadieh, Jinho Yang, Donghun Kim, San Do Noh
 
34.
Challenges and opportunities to advance manufacturing research for sustainable battery life cycles
Björn Johansson, Mélanie Despeisse, Jon Bokrantz, Greta Braun, Huizhong Cao, Arpita Chari, Qi Fang, Clarissa A. González Chávez, Anders Skoogh, Henrik Söderlund, Hao Wang, Kristina Wärmefjord, Lars Nyborg, Jinhua Sun, Roland Örtengren, Kelsea A. Schumacher, Laura Espinal, K. C. Morris, Jason Nunley, Yusuke Kishita, Yasushi Umeda, Federica Acerbi, Marta Pinzone, Hanna Persson, Sophie Charpentier, Kristina Edström, Daniel Brandell, Maheshwaran Gopalakrishnan, Hossein Rahnama, Lena Abrahamsson, Anna Öhrwall Rönnbäck, Johan Stahre
Frontiers in Manufacturing Technology
 
35.
Investigating the Causal Relationships among Enablers of the Construction 5.0 Paradigm: Integration of Operator 5.0 and Society 5.0 with Human-Centricity, Sustainability, and Resilience
Ibrahim Yitmen, Amjad Almusaed, Sepehr Alizadehsalehi
Sustainability
 
36.
Advances in Production Management Systems. Smart Manufacturing and Logistics Systems: Turning Ideas into Action
Lara P. Zambiasi, Ricardo J. Rabelo, Saulo P. Zambiasi, Rafael Lizot
 
37.
Information field in a manufacturing System: Concepts, measurements and applications
Fansen Kong, Zhenlin Lu, Liang Kong, Taibo Chen
Advanced Engineering Informatics
 
38.
Exploring how new industrial paradigms affect the workforce: A literature review of Operator 4.0.
Marianna Ciccarelli, Alessandra Papetti, Michele Germani
Journal of Manufacturing Systems
 
39.
Advances in Production Management Systems. Production Management Systems for Volatile, Uncertain, Complex, and Ambiguous Environments
Anne Grethe Syversen, Martina Ortova, Godfrey Mugurusi, Kristin H. Hansen
 
40.
The human role in Human-centric Industry
Sepideh Kalateh, Luis A. Estrada-Jimenez, Terrin Pulikottil, Sanaz Nikghadam Hojjati, Jose Barata
IECON 2022 – 48th Annual Conference of the IEEE Industrial Electronics Society
 
41.
Manufacturing from Industry 4.0 to Industry 5.0
S. Ehsan Hashemi-Petroodi, Simon Thevenin, Alexandre Dolgui
 
42.
Technology-driven smart manufacturing and its spatial impacts on carbon emissions: Evidence from China
Maliyamu Abudureheman, Qingzhe Jiang, Jiong Gong, Abulaiti Yiming
Computers & Industrial Engineering
 
43.
A System for Individual Environmental Risk Assessment and Management with IoT Based on the Worker’s Health History
Janaína Lemos, Vanessa Borba de Souza, Frederico Soares Falcetta, Fernando Kude de Almeida, Tânia M. Lima, Pedro D. Gaspar
Applied Sciences
 
44.
Data-driven analysis and human-centric assignment for manual assembly production lines
Goo-Young Kim, Jongpil Yun, Changha Lee, Junwoo Lim, Yongjin Kim, Sang Do Noh
Computers & Industrial Engineering
 
45.
Industry 5 and the Human in Human-Centric Manufacturing
Kendra Briken, Jed Moore, Dora Scholarios, Emily Rose, Andrew Sherlock
Sensors
 
46.
Applications, Challenges, and Future Directions of Human-in-the-Loop Learning
Sushant Kumar, Sumit Datta, Vishakha Singh, Deepanwita Datta, Sanjay Kumar Singh, Ritesh Sharma
IEEE Access
 
47.
A Literature Review of the Challenges and Opportunities of the Transition from Industry 4.0 to Society 5.0
Dimitris Mourtzis, John Angelopoulos, Nikos Panopoulos
Energies
 
48.
An Intelligent Product Service System for Adaptive Maintenance of Engineered-to-Order Manufacturing Equipment Assisted by Augmented Reality
John Angelopoulos, Dimitris Mourtzis
Applied Sciences
 
49.
A structural equation modeling framework for exploring the industry 5.0 and sustainable supply chain determinants
Md. Asfaq Jamil, Ridwan Mustofa, Niamat Ullah Ibne Hossain, S.M. Atikur Rahman, Sudipta Chowdhury
Supply Chain Analytics
 
50.
An Extended Review of the Manufacturing Transition Under the Era of Industry 5.0
Hajar Mouhib, Sara Amar, Samah Elrhanimi, Laila El Abbadi
2023 7th IEEE Congress on Information Science and Technology (CiSt)
 
51.
A Human Digital-Twin-Based Framework Driving Human Centricity towards Industry 5.0
Gianfranco E. Modoni, Marco Sacco
Sensors
 
52.
A human-oriented design process for collaborative robotics
Alessandra Papetti, Marianna Ciccarelli, Cecilia Scoccia, Giacomo Palmieri, Michele Germani
International Journal of Computer Integrated Manufacturing
 
53.
Human work in the shift to Industry 4.0: a road map to the management of technological changes in manufacturing
Arto Reiman, Jari Kaivo-oja, Elina Parviainen, Esa-Pekka Takala, Theresa Lauraeus
International Journal of Production Research
 
54.
Manufacturing from Industry 4.0 to Industry 5.0
Dimitris Mourtzis, John Angelopoulos
 
55.
Ontology-Based Development of Industry 4.0 and 5.0 Solutions for Smart Manufacturing and Production
János Abonyi, László Nagy, Tamás Ruppert
 
56.
A data and knowledge driven autonomous intelligent manufacturing system for intelligent factories
Han Wang, Chenze Wang, Qing Liu, Xiaohan Zhang, Min Liu, Yumin Ma, Feng Yan, Weiming Shen
Journal of Manufacturing Systems
 
57.
Manufacturing from Industry 4.0 to Industry 5.0
Dimitris Mourtzis
 
58.
Advances in Production Management Systems. Production Management Systems for Volatile, Uncertain, Complex, and Ambiguous Environments
Mónika Gugolya, Tibor Medvegy, János Abonyi, Tamás Ruppert
 
59.
Industry 4.0 Driven Manufacturing Technologies
Mukul Kumar, Sourabh Anand, Pushpendra S. Bharti, Manoj Kumar Satyarthi, Parveen Kumar, Ajay Kumar
 
eISSN:2391-8071
ISSN:1895-7595
Journals System - logo
Scroll to top