The aim of this paper was to analyse in depth the existing research on the effectiveness of forced cooling and the directions in its improvement and development against the background of the increasing needs of machine tools and machining processes. The forced cooling methods used and their importance from the point of view of the development of machine tools are discussed. A detailed review of the state of the art in this field, including the latest research reports, is carried out. The essence and methods of forced cooling parameters improvement through holistic modelling, numerical simulations and optimization are presented. Moreover, the currently achievable effectiveness of forced cooling is illustrated with the results of the research conducted by the authors. Finally, conclusions are drawn and suggestions concerning the future research in this field are put forward.
REFERENCES(24)
1.
JEDRZEJEWSKI J., POTRYKUS J, KWASNY W., 1972, Device for heat transfer from bearing nodes of machine tools, Patent Nr. 64570, (Polish).
JEDRZEJEWSKI J, KWASNY W, POTRYKUS J., 1989, Beurteilung der Berechnungsmethoden für die Bestimmung der Energieverluste im Wälzlagern, Schmierungstechnik, 20/8, 243–244.
VYROUBAL J., 2010, Using the spindle cooling temperature as a tool for compensating the thermal deformation of machines, Acta Polytechnica, 50/1, 19–22.
WINIARSKI Z, KOWAL Z, BLAZEJEWSKI A., 2008, Decreasing of thermal errors in a lathe by forced cooling of ball screws and headstock, Journal of Machine Engineering 8/4, 122–130.
XIROUCHAKIS P., AVRAM O.I., ADHAM M., 2009, Machine tool cooling and lubrication in the use phase, Final Report, Swiss Federal Institute of Technology, Lausanne, 17-Jun., 1–24.
BRECHER C., BÄUMLER S., JASPER D., TRIEBS J., 2012, Energy efficient cooling systems for machine tools, 19th CIRP Int Conf on Life Cycle Engineering, Berkeley, 239–244.
UHLMANN E., PRASOL L., THOM S., SALEIN S., WIESE R., 2018, Development of dynamic model for simulation of a thermoelectric self-cooling system for linear direct drives in machine tools, Proceedings, CIRP Sponsored Conference on Thermal Issues in Machine Tools, Dresden, 75–91.
UHLMANN E., SALEIN S., POLTE M., TRIEBEL F., 2020, Modelling of a thermoelectric self-cooling system based on thermal resistance networks for Linear direct drives in machine tools, Journal of Machine Engineering, 20/1, 43–57.
HELLMICH A., GLANZEL J., PIERER A., 2018, Analysing and optimizing the fluidic tempering of machine tool frames, CIRP Sponsored Conference on Thermal Issues in Machine Tools, Dresden, 195–210.
DENKENA B., BERGMAN B., KLEMME H., DOHLMANN D., 2018, Cooling potential of heat pipes and heat exchangers within a machine tool spindle, Proceedings, CIRP Sponsored Conference on Thermal Issues in Machine Tools, Dresden, 295–305.
JEDRZEJEWSKI J., WINIARSKI Z., HA J.Y., 2014, The modelling of Liquid cooling for the efficient reduction of thermal errors in heavy duty machine tools, 11th Int. Conf. on High Speed Machining, Sept 11-12, Prague, Czech Rep., Techn. Univ. Prague Proc., 1–9.
KOWAL Z., WINIARSKI Z., 1990, Computer system for the analysis and optimization of the thermal displacements of machining centres, Przeglad Mechaniczny, 49/21–22, 42–46, (in Polish).
JEDRZEJEWSKI J., KWASNY W., KOWAL Z., WINIARSKI Z., 2014, In-house system for holistic modelling of machine tool operating properties, The 2nd Int. Conf. on Systems and Informatics CSAI 15-17 November, Shanghai, China; ed. Yunfei Chen Danvers, MA: IEEE, 409–414.
JEDRZEJEWSKI J., KOWAL Z., KWASNY W., WINIARSKI Z., 2019, Ball screw precise modelling with dynamics of loads and moving heat sources taken into account, Journal of Machine Engineering, 19/4, 27–41.
Post-process updating of model parameters to approximate thermal errors of machine tools operating in different configurations Daniel Divíšek, Martin Mareš, Otakar Horejš Precision Engineering
Development of FEM thermal simulation using four virtual models(Analysis of the phenomenon of heat build-up in the structure and forced intake and exhaust into the structure) Ikuo TANABE Transactions of the JSME (in Japanese)
Reduction of precise machining centre column thermal deformations caused by changes in ambient temperature by means of liquid cooling Zdzislaw Winiarski, Jerzy Jedrzejewski, Wojciech Kwaśny, Hyunpyo Ha Journal of Manufacturing Processes
Investigation of Tool Cooling and Heat Transfer Using Computational Fluid Dynamics Simulations Christian Naumann, Alexander Geist, Tharun Suresh Kumar, Janine Glanzel, Claus-Dieter Schmidt, Steffen Brier, Steffen Ihlenfeldt, Martin Dix, Philipp Klimant Journal of Machine Engineering
We process personal data collected when visiting the website. The function of obtaining information about users and their behavior is carried out by voluntarily entered information in forms and saving cookies in end devices. Data, including cookies, are used to provide services, improve the user experience and to analyze the traffic in accordance with the Privacy policy. Data are also collected and processed by Google Analytics tool (more).
You can change cookies settings in your browser. Restricted use of cookies in the browser configuration may affect some functionalities of the website.