Research on forced cooling of machine tools and its operational effects
 
More details
Hide details
1
Wroclaw University of Science and Technology, Department of Machine Tools and Mechanical Technologies, Wroclaw, Poland
Submission date: 2020-03-06
Acceptance date: 2020-05-20
Online publication date: 2020-06-24
Publication date: 2020-06-24
 
Journal of Machine Engineering 2020;20(2):18–38
 
KEYWORDS
ABSTRACT
The aim of this paper was to analyse in depth the existing research on the effectiveness of forced cooling and the directions in its improvement and development against the background of the increasing needs of machine tools and machining processes. The forced cooling methods used and their importance from the point of view of the development of machine tools are discussed. A detailed review of the state of the art in this field, including the latest research reports, is carried out. The essence and methods of forced cooling parameters improvement through holistic modelling, numerical simulations and optimization are presented. Moreover, the currently achievable effectiveness of forced cooling is illustrated with the results of the research conducted by the authors. Finally, conclusions are drawn and suggestions concerning the future research in this field are put forward.
 
REFERENCES (24)
1.
JEDRZEJEWSKI J., POTRYKUS J, KWASNY W., 1972, Device for heat transfer from bearing nodes of machine tools, Patent Nr. 64570, (Polish).
 
2.
JEDRZEJEWSKI J., 1973, Zur Erwërmung von Drehmaschinen – Spindlkasten, Werkzeugmaschinen International, 4, 47–50.
 
3.
JEDRZEJEWSKI J, POTRYKUS J., 1968, Die Wärmeableitung an Werkzeugmaschinen Spindellagerungen, Maschinenbautechnik, 17/8, 423–426.
 
4.
JEDRZEJEWSKI J, KWASNY W, POTRYKUS J., 1989, Beurteilung der Berechnungsmethoden für die Bestimmung der Energieverluste im Wälzlagern, Schmierungstechnik, 20/8, 243–244.
 
5.
DE HAAS P., 1975, Möglichkeiten und Grenzen zur Kompensation thermischer Stoereinflussen bei Fertigungsystemen, ZwF, 70/7, 366–370.
 
6.
DE HAAS P, HEISEL U., 1978, Kompensation thermischer Deformationen an Werzeugmaschinen, ZwF, 73/11, 555–560.
 
7.
VYROUBAL J., 2010, Using the spindle cooling temperature as a tool for compensating the thermal deformation of machines, Acta Polytechnica, 50/1, 19–22.
 
8.
WINIARSKI Z, KOWAL Z., 2006, Investigation of the effects of heat generation in HSM electroheadstocks. Journal of Machine Engineering, 6/2), 107-115.
 
9.
WINIARSKI Z, KOWAL Z, BLAZEJEWSKI A., 2008, Decreasing of thermal errors in a lathe by forced cooling of ball screws and headstock, Journal of Machine Engineering 8/4, 122–130.
 
10.
WINIARSKI Z, KOWAL Z, KWASNY W, HA J-Y., 2010, Thermal model of the spindle drive structure, Journal of Machine Engineering, 10/4, 41–52.
 
11.
XIROUCHAKIS P., AVRAM O.I., ADHAM M., 2009, Machine tool cooling and lubrication in the use phase, Final Report, Swiss Federal Institute of Technology, Lausanne, 17-Jun., 1–24.
 
12.
BRECHER C., BÄUMLER S., JASPER D., TRIEBS J., 2012, Energy efficient cooling systems for machine tools, 19th CIRP Int Conf on Life Cycle Engineering, Berkeley, 239–244.
 
13.
MIYAGUCHI K., ARAI S., 2013, State of the Art Ball Screw trends for Machine Tool Applications, Journal of SME-Japan, 13–18.
 
14.
XIA C., FU J., LAI J., YAO X., CHEN Z., 2015, Conjugate heat transfer in fractal tree-like channels network heat sink for high-speed motorized spindle cooling, Applied Thermal Engineering, 90, 1032–1042.
 
15.
UHLMANN E., PRASOL L., THOM S., SALEIN S., WIESE R., 2018, Development of dynamic model for simulation of a thermoelectric self-cooling system for linear direct drives in machine tools, Proceedings, CIRP Sponsored Conference on Thermal Issues in Machine Tools, Dresden, 75–91.
 
16.
UHLMANN E., SALEIN S., POLTE M., TRIEBEL F., 2020, Modelling of a thermoelectric self-cooling system based on thermal resistance networks for Linear direct drives in machine tools, Journal of Machine Engineering, 20/1, 43–57.
 
17.
HELLMICH A., GLANZEL J., PIERER A., 2018, Analysing and optimizing the fluidic tempering of machine tool frames, CIRP Sponsored Conference on Thermal Issues in Machine Tools, Dresden, 195–210.
 
18.
DENKENA B., BERGMAN B., KLEMME H., DOHLMANN D., 2018, Cooling potential of heat pipes and heat exchangers within a machine tool spindle, Proceedings, CIRP Sponsored Conference on Thermal Issues in Machine Tools, Dresden, 295–305.
 
19.
WEGENER K., MAYR J., MERKLEIN M., BERENS B-A., AOYAMA T., SULITKA M., FLEISCHER J., GROCHE P., KAFTANOGLU B., JOCHUM N., MOEHRING H-CH., 2017, Fluid elements in machine tools, CIRP Annals – Manufacturing Technology, 60, 611–634.
 
20.
JEDRZEJEWSKI J., WINIARSKI Z., HA J.Y., 2014, The modelling of Liquid cooling for the efficient reduction of thermal errors in heavy duty machine tools, 11th Int. Conf. on High Speed Machining, Sept 11-12, Prague, Czech Rep., Techn. Univ. Prague Proc., 1–9.
 
21.
WINIARSKI Z., 2006, Thermal analyses in the design of the electrospindles of contemporary machine tools, Mechanik, 03, 230–234, (in Polish).
 
22.
KOWAL Z., WINIARSKI Z., 1990, Computer system for the analysis and optimization of the thermal displacements of machining centres, Przeglad Mechaniczny, 49/21–22, 42–46, (in Polish).
 
23.
JEDRZEJEWSKI J., KWASNY W., KOWAL Z., WINIARSKI Z., 2014, In-house system for holistic modelling of machine tool operating properties, The 2nd Int. Conf. on Systems and Informatics CSAI 15-17 November, Shanghai, China; ed. Yunfei Chen Danvers, MA: IEEE, 409–414.
 
24.
JEDRZEJEWSKI J., KOWAL Z., KWASNY W., WINIARSKI Z., 2019, Ball screw precise modelling with dynamics of loads and moving heat sources taken into account, Journal of Machine Engineering, 19/4, 27–41.
 
eISSN:2391-8071
ISSN:1895-7595