The notion of fractals and the possibility of exploiting them in surface engineering are discussed. The fractal dimension problem is addressed and basic information relating to brushing and roughness parameters is provided. The results of tests on specimens in the form of structural steel (S275J0) plates subjected to brushing are presented. The machining was conducted using an FWD 32J milling machine with a GE 950 G PLUS straight grinder together with an A11-CB15M brush mounted on it. On the basis of the test results an analysis of selected roughness parameters, with the focus on the different degrees of correlation between the particular indicators and the fractal dimension, was carried out.
REFERENCES(15)
1.
WIECZOROWSKI M., 2009, The Use of Topographic Analysis in the Measurement of Surface Roughness, Wydawnictwo Politechniki Poznańskiej, (in Polish).
GAWLIK J., MAGDZIARCZYK W., WOJNAR L., 2011, Fractal Analysis of the Geometric Structure of the Surface, Komputerowo Zintegrowane Zarządzanie. T. 2 ,Ofic. Wydaw. Polskiego Towarzystwa Zarządzania Produkcją, 382–396, (in Polish).
ZHANG X., ZHENG G., CHENG X., LI Y., LI L., LIU H., 2020, 2D Fractal Analysis of the Cutting Force and Surface Profile in Turning of Iron-Based Superalloy, Measurement, 151, 107125.
GRZESIK W., BROL S., 2009, Wavelet and Fractal Approach to Surface Roughness Characterization after Finish Turning of Different Workpiece Materials, Journal of Materials Processing Technology, 209, 2522–2531.
KANG M.C., KIM J.S., KIM K.H., 2005, Fractal Dimension Analysis of Machined Surface Depending on Coated Tool Wear, Surface & Coatings Technology 193, 259– 265.
ZHAO B., LI P., ZHAO C., WANG X., 2020, Fractal Characterization of Surface Microtexture of Ti6Al4V Subjected to Ultrasonic Vibration Assisted Milling, Ultrasonics, 102, 106052.
LI G., ZHANG K., GONG J., JIN X., 2019, Calculation Method for Fractal Characteristics of Machining Topography Surface Based of Wavelet Transform, Procedia CIRP, 79, 500–504.
EL-SONBATY I.A., KHASHABA U.A., SELMY A.I., ALI A.I., 2008, Prediction of Surface Roughness Profiles for Milled Surfaces Using an Artificial Neural Network and Fractal Geometry Approach, Journal of Materials Processing Technology, 200, 271–278.
PN-EN ISO 4287-1999, Product Geometry Specifications. Geometric Structure of the Surface: Profile Method – Terms, Definitions and Parameters of the Structure, Polski Komitet Normalizacyjny, (in Polish).
Surface Evaluation of Orthodontic Brackets Using Texture and Fractal Dimension Analysis Michał Sarul, Marcin Mikulewicz, Marcin Kozakiewicz, Kamil Jurczyszyn Materials
Surface Evaluation of Aligners after Immersion in Coca-Cola and Orange Juice Maciej Warnecki, Michał Sarul, Marcin Kozakiewicz, Anna Zięty, Bartosz Babiarczuk, Beata Kawala, Kamil Jurczyszyn Materials
We process personal data collected when visiting the website. The function of obtaining information about users and their behavior is carried out by voluntarily entered information in forms and saving cookies in end devices. Data, including cookies, are used to provide services, improve the user experience and to analyze the traffic in accordance with the Privacy policy. Data are also collected and processed by Google Analytics tool (more).
You can change cookies settings in your browser. Restricted use of cookies in the browser configuration may affect some functionalities of the website.