Thermo-elastic structural analysis of a machine tool using a multi-channel absolute laser interferometer
 
More details
Hide details
1
Institute of Mechatronic Engineering Dresden (IMD), TU Dresden, Germany
2
Fraunhofer Institute for Machine Tools and Forming Technology (IWU), Dresden, Germany
Submission date: 2020-01-19
Acceptance date: 2020-04-15
Online publication date: 2020-09-25
Publication date: 2020-09-25
 
Journal of Machine Engineering 2020;20(3):63–75
 
KEYWORDS
ABSTRACT
One of the main errors in the machining accuracy of machine tools is the displacement through thermal induced deformation. Modern design and construction methods aim to optimize the heat flow in the machine to achieve minimum displacement. To enable a further improvement it is essential to know the displacement state of the complete machine structure. However, most measurement methods that are used to capture the influence of a thermal load only measure the displacement of the TCP or individual axes. This paper presents a methodology to capture the complex spatial displacement condition of a state of the art machine tool in one measuring cycle using a multichannel laser interferometer. It describes the development of the measurement model as well as the measurement setup in the workspace of the machine. With measurements according to the presented procedure, it is possible to uncover weak points in the structure of a machine tool and to derive warm-up and cooling strategies.
 
REFERENCES (15)
1.
MAYR J., JEDRZEJEWSKI J., UHLMANN E., DONMEZ M.A., KNAPP W., HÄRTIG F., WENDT K., MORIWAKI T., SHORE P., SCHMITT R., BRECHER Ch., WÜRZ T., WEGENER K., 2012, Thermal Issues in Machine Tools, CIRP Annals – Manufacturing Technology, 61/2, 771–791.
 
2.
ISO 230-3, 2007, Test Code for Machine Tools – Part3: Determination of Thermal Effects.
 
3.
SCHWENKE H., KNAPP W., HAITJEMA H., WECKMANN A., 2008, Geometric Error Measurement and Compensation of Machines – An Update, CIRP Annals, 57/2, 660–675.
 
4.
DIN ISO 230-1, 1999, Prüfregeln für Werkzeugmaschinen, Teil 1: Geometrische Genauigkeit von Maschinen, die ohne Last oder unter Schlichtbedingungen arbeiten.
 
5.
IBARAKI S., KNAPP W., 2012, Indirect Measurement of Volumetric Accuracy for Three-Axis and Five-Axis Machine Tools: A Review, International Journal of Automation Technology, 6/2, 110–124.
 
6.
SCHWENKE H., FRANKE M., HANNAFORD J., KUNZMANN H., 2005, Error Mapping of CMMs and Machine Tools by a Single Tracking Interferometer, CIRP Annals, 54/1, 475–478.
 
7.
SCHWENKE H., SCHMITT R., JATZKOWSKI P., WARMANN C., 2009, On-the-Fly Calibration of Linear and Rotary Axes of Machine Tools and CMMs Using a Tracking Interferometer, CIRP Annals, 58/1, 477–480.
 
8.
WECK M., BRECHER C., 2006.,Werkzeugmaschinen Band 5 Messtechnische Untersuchung und Beurteilung, dynamische Stabilität, Springer Verlag.
 
9.
CABRAL A., ABREAU M., REBORDAO J. M., 2009, Absolute Distance Metrology for Long Distances with Dual Frequency Sweeping Interferometry, XIX IMEKO World Congress Fundamental and Applied Metrology.
 
10.
DALE J., HUGHES B., LANCASTER A.J., LEWIS A.J., REICHOLD A.J.H., WARDEN M.S., 2014, Multi-Channel Absolute Distance Measurement System with Sub PPM-Accuracy and 20 m Range Using Frequency Scanning Interferometry and Gas Absorption Cells, Optics Express, 22/20, 24869–24893.
 
11.
SCHWENKE H., 2016, Laser metrology for on-machine-measurements, 3DMC.
 
12.
MUTILBA U., GOMEZ-ACEDO E., KORTABERRIA G., OLARRA A., YAGÜE-FABRA J.A., 2017, Trac-Ability of On-Machine Tool Measurement: A Review. Sensors, 17/7, 1605.
 
13.
Absolute multiline technology, https://www.etalon-gmbh.com/pr... (Accessed: 2020-01-09).
 
14.
NEITZEL F., 2010, Ausgleichsrechnung – Modellbildung, Auswertung, Qualitätsbeurteilung, In Qualitätsmana-gement geodätischer Mess- und Auswerteverfahren.
 
15.
LUHMANN T., 2018, Nahbereichsphotogrammetrie: Grundlagen – Methoden – Beispiele, Wichmann Herbert, ISBN-10: 3879076405.
 
eISSN:2391-8071
ISSN:1895-7595