Assembly Time Standard Setting Based on Kernel Estimators
 
More details
Hide details
1
Industrial Engineering, University of Bielsko-Biala Willowa 2, 43-300 Bielsko-Biała, Poland, Poland
 
 
Submission date: 2025-01-23
 
 
Final revision date: 2025-03-19
 
 
Acceptance date: 2025-03-19
 
 
Online publication date: 2025-03-22
 
 
Corresponding author
Izabela Kutschenreiter-Praszkiewicz   

Industrial Engineering, University of Bielsko-Biala Willowa 2, 43-300 Bielsko-Biała, Poland, Willowa 2, 43-300, Bielsko-Biała, Poland
 
 
 
KEYWORDS
TOPICS
ABSTRACT
Time standards belong to vital indicators of the production process that facilitate making decisions related to product and process improvement. The presented issues concern the determination of the assembly time standard using kernel estimators. The development of neural networks offers the possibility to identify begin-end points in the assembly process that can provide big data related to the assembly time standard. The problem addressed in this paper is development of a method of big data analysis, on the basis of which the assembly time standard can be determined. In the presented approach adequate formulas are developed together with some examples. The paper presents an application of the theory of kernel estimators as well as results of the proposed approach.
REFERENCES (30)
1.
GROOVER M.P., 2007, Work Systems: the Methods, Measurement and Management of Work, Prentice Hall.
 
2.
SALVENDY G., 2001, Handbook of Industrial Engineering: Technology and Operations Management, John Wiley & Sons, Hoboken.
 
3.
ZANDIN K., 2001, Maynard's Industrial Engineering Handbook, Fifth Edition, McGraw-Hill, New York.
 
4.
KUTSCHENREITER-PRASZKIEWICZ I., 2023, Development of a Neural Network Structure for Identifying Begin-End Points in the Assembly Process, Journal of Machine Engineering, 23/2, 100–109, https://doi.org/10.36897/ jme/163318.
 
5.
BAYOUMI A.M.E., 2000, Design for Manufacture and Assembly (DFMA): Concepts, Benefits and Applications, Current Advances in Mechanical Design and Production VII, 501–109, https://doi.org/10.1016/B978-0....
 
6.
SWIFT K.G., BOOKER J.D., 2003, Process Selection, Butterworth-Heinemann, An imprint of Elsevier Linacre House, Jordan Hill, Oxford OX2 8DP 200 Wheeler Road, Burlington MA 01803.
 
7.
MITAL A., MITAL A., 2014, Designing for Assembly and Disassembly, Product Development, https://doi.org/ 10.1016/ B978-0-12-799945-6.00007-7.
 
8.
POLI C., 2001, Assembly in Design for Manufacturing, Elsevier Science & Technology Books, Amsterdam.
 
9.
QU M., ZHOU J., LV D., ZHANG G., ZHENG Y., XIE J., 2024, Synchronous Gesture Recognition and Muscle Force Estimation Based on Piezoelectric Micromachined Ultrasound Transducer, Sensors & Actuators: A. Physical, 377, 115687.
 
10.
SHI L., FENG J., ZHU Y., HUANG F., AW K., 2024, A Review of Flexible Strain Sensors for Walking Gait Monitoring, Sensors & Actuators: A. Physical, 377, 115730.
 
11.
BOTT A., LIU B., PUCHTA A., FLEISCHER J., 2024, Machine Learning-Driven Rul Prediction and Uncertainty Quantification for Ball Screw Drives, in a Cloud-Ready Maintenance Framework, Journal of Machine Engineering, 24/3, 17–31.
 
12.
JAQUEMOD A., PALALIC M., GÜZEL K., MÖHRING H.-CH., 2024, In-Process Monitoring of Inhomogeneous Material Characteristics Based on Machine Learning for Future Application in Additive Manufacturing, Journal of Machine Engineering, 24/2, 83–93, https://doi.org/10.36897/jme/1....
 
13.
ARDUENGO J., HASCOET N., CHINESTA F., HASCOET J.-Y., 2024, Open-Loop Control System for High Precision Extrusion-Based Bioprinting Through Machine Learning Modelling, Journal of Machine Engineering, 24/1, 103–117, https://doi.org/10.36897/jme/1....
 
14.
PRASZKIEWICZ T., KUTSCHENREITER-PRASZKIEWICZ I., 2022, Use of A Data Analysis Method Based on Kernel Estimators for Work Process (in Polish), in: Sztuczna inteligencja oraz nowe rozwiązania w zarządzaniu i naukach technicznych, red., Mołdoch-Mendoń I., Szymczyk P., Wydawnictwo Naukowe TYGIEL, Lublin.
 
15.
KUTSCHENREITER-PRASZKIEWICZ I., 2015, Work Measurement, Normowanie czasu pracy, Wydawnictwo ATH, Bielsko-Biała.
 
16.
ROSENBLATT, M., 1956, Remarks on Some Nonparametric Estimates of a Density Function, The Annals of Mathematical Statistics. 27/3, 832–837, https://doi.org/doi:10.1214/ao....
 
17.
PARZEN, E., 1962, On Estimation of a Probability Density Function and Mode, The Annals of Mathematical Statistics. 33/3, 1065–1076, https://doi.org/10.1214/aoms/1.... JSTOR 2237880.
 
18.
HASTIE T., TIBSHIRANI R., FRIEDMAN J., 2001, The Elements of Statistical Learning, Data Mining, Inference, and Prediction, Springer, New York.
 
19.
KULCZYCKI P., 2007, Kernel Estimators in System Research Issues, Information techniques in systems research, WNT, Warszawa, (in Polish).
 
20.
KULCZYCKI P., 2005, Kernel Estimators in System Analysis, (in Polish) Kernel estimators in systems analysis, WNT, Warszawa, (in Polish).
 
21.
PODLASKI R., ROESCH F.A., 2014, Approximation of Tree Breast Height Distributions in Two-Generation Stands Using Mixed Distributions, SYLWAN, 158/6, 414−422.
 
22.
YAN X., WILLIAMS R., ARVANITIS E., MELKOTE S., 2024, Deep Learning-Based Semantic Segmentation of Machinable Volumes for Cyber Manufacturing Service, Journal of Manufacturing Systems, 72, 16–25.
 
23.
LENG J., ZHU X., HUANG Z., LI X., ZHENG P., ZHOU X., MOURTZIS D., WANG B., QI Q., SHAO H., WAN J., CHEN X., WANG L., LIU Q., 2024, Unlocking the Power of Industrial Artificial Intelligence Towards Industry 5.0: Insights, Pathways, and Challenges, Journal of Manufacturing Systems, 73, 349–363, https://doi.org/ 10.1016/j.jmsy.2024.02.010.
 
24.
LI W., XU A., WEI M., ZUO W., LI R., 2024, Deep Learning-Based Augmented Reality Work Instruction Assistance System for Complex Manual Assembly, Journal of Manufacturing Systems, 73, 307–319, https://doi.org/10.1016/ j.jmsy.2024.02.009.
 
25.
CIMINO A., LONGO F., MIRABELLI G., SOLINA V., VERTERAMO S., 2024, An Ontology-Based, General-Purpose and Industry 4.0-Ready Architecture for Supporting the Smart Operator (Part II – Virtual Reality Case), Journal of Manufacturing Systems, 73, 52–64, https://doi.org/10.1016/j.jmsy....
 
26.
ZHOU H., LU Q., QIAN J., 2024, A Graph-Based Framework for Assembly Sequence Planning of a Cable Harness, Journal of Manufacturing Systems, 73, 39–51, https://doi.org/10.1016/j.jmsy....
 
27.
WANG B., ZHENG L., WANG Y., FANG W., WANG L., 2024, Towards the Industry 5.0 Frontier: Review and Prospect of XR in Product Assembly, Journal of Manufacturing Systems, 74, 777–811, https://doi.org/10.1016/ j.jmsy.2024.05.002.
 
28.
FANG S., LIU S., WANG X., ZHANG J., LIU J., NI Q., 2025, A Multivariate Fusion Collision Detection Method for Dynamic Operations of Human-Robot Collaboration Systems, Journal of Manufacturing Systems, 78, 26–45, https://doi.org/10.1016/j.jmsy....
 
29.
GÖRÇÜN Ö. F., MISHRA A. R., AYTEKIN A., SIMIC V., KORUCUK S., 2024, Evaluation of Industry 4.0 Strategies for Digital Transformation in the Automotive Manufacturing Industry Using an Integrated Fuzzy Decision-Making Model, Journal of Manufacturing Systems, 74, 922–948, https://doi.org/10.1016/j.jmsy. 2024.05.005.
 
30.
DING H., HAO K., CHEN L., SHI X., 2024, Feature Structured Domain Adaptation for Quality Prediction of Cross Working Conditions in Industrial Processes, Journal of Manufacturing Systems, 74, 887–900, https://doi.org /10.1016/j.jmsy.2024.05.011.
 
eISSN:2391-8071
ISSN:1895-7595
Journals System - logo
Scroll to top