Effects of Ultrasonic Oscillation on Shrink-Fitted Assembly
 
 
More details
Hide details
1
Mechanical Engineering, HoChiMinh City University of Technology (HCMUT)- VNUHCM, Viet Nam
 
 
Submission date: 2024-03-30
 
 
Final revision date: 2024-06-15
 
 
Acceptance date: 2024-06-15
 
 
Online publication date: 2024-08-30
 
 
Corresponding author
Loc Huu Nguyen   

Mechanical Engineering, HoChiMinh City University of Technology (HCMUT)- VNUHCM, 268 Ly Thuong Kiet, Dít 10, HoChiMinh City, 700000, Ho Chi Minh City, Viet Nam
 
 
 
KEYWORDS
TOPICS
ABSTRACT
Shrink-fitting is widely recognized as the primary method for assembling interference fits. However, the use of the shrink-fitting technique in forming linkages between parts is often constrained by the requirement for high temperatures and the inevitable occurrence of surface damage. Consequently, an analysis of the integration of high-frequency stimulation, also known as ultrasonic oscillation, has been undertaken to develop a novel assembly procedure aiming at reducing the issues associated with shrink-fitted joints. The oscillation was conducted with generating power ranging from 500 to 1500 W and processing time from 10 to 70 seconds. The ultrasonic oscillated shrink-fitting procedure exhibits significant advantages, reduces surface damage while concurrently enhancing the axial holding load limit of the joint. This approach opens the door to the integration of new assembly techniques in small mechanisms, where straightforward joints are of paramount importance.
 
REFERENCES (30)
1.
SCHMID S.R., HAMROCK B.J., JACOBSON B., 2014, Fundamentals of Machine Elements (3rd Ed.), CRC Press, New York, https://doi.org/10.1201/b17120.
 
2.
GROOVER M.P., 2021, Fundamentals of Modern Manufacturing: Materials, Processes, and Systems, John Wiley & Sons Singapore Pte Ltd.
 
3.
RAMAMOORTHY B., RADHAKRISHNAN V., 1994, A Study of The Surface Deformations in Press and Shrink Fitted Assemblies, Wears, 173/1–2, 75–83, https://doi.org/10.1016/0043-1....
 
4.
KUMAR S., WU C.S., PADHY G.K., DING W., 2017, Application of Ultrasonic Vibrations in Welding and Metal Processing: A Status Review, J. Manuf. Processes, 26, 295–322, https://doi.org/10.1016/j.jmap....
 
5.
MARIUSZ L., PAWEL G., EMILIA B.R., 2023, The Effect of Contact Compliance of Sliding Pair on Friction Force Reduction at Longitudinal Tangential Vibrations, Tribology Int., 187, 108701, https://doi.org/10.1016/j/ triboint.2023.108701.
 
6.
WANG C.J., LIU Y., GUO B., SHAN D.B., ZHANG B., 2016, Acoustic Softening And Stress Superposition in Ultrasonic Vibration Assisted Uniaxial Tension of Copper Foil: Experiments and Modelling, Mater. Des., 112, 246–253, https://doi.org/10.1016/j.matd....
 
7.
SHAO G., LI H., ZHAN M., 2021, A Review on Ultrasonic-Assisted Forming: Mechanism, Model, and Process, Chin. J. Mech. Eng., 34/1, https://doi.org/10.1186/s10033....
 
8.
DONG S., DAPINO M.J., 2014, Elastic-Plastic Cube Model for Ultrasonic Friction Reduction Via Poisson’s Effect, Ultrason., 54(1), 343–350, https://doi.org/10.1016/j.ultr....
 
9.
HÜYÜK, H., MUSIC, O., KOC, A., KARADOGAN, C., BAYRAM, Ç., 2014, Analysis of Elastic-Plastic Interference-Fit Joints, Procedia Eng., 81, 2030–2035, https://doi.org/10.1016/j.proe....
 
10.
MIKOLAINIS, J., BAKSYS, B., 2012, Experimental Investigation of Interference Fit Connection of Mechanical Components, J. of Vibroeng., 14/1, 73–78, https://www.extrica.com/articl....
 
11.
LAURENCZY, C., BERLIE, D., JACOT, J., 2014, Ultrasonic Press–Fitting: A New Assembly Technique, Precis. Assem. Technol. and Syst., IPAS 2014, IFIP Adv. Inf. and Commun. Technol., 435, 22–29, Springer, Berlin, Heidelberg, https://doi.org/10.1007/978-3-....
 
12.
NIGMETZYANOV R.I., SUNDUKOV S.K., FATYUKHIN D.S., 2017, Ultrasonic assembly of press-fit joints, Russian Eng. Res., 37/12, 1044–1047, https://doi.org/10.3103/s10687....
 
13.
DIEUDONNE E., FLORENCE O., JOSEPH N.A., CLAUDE VALERY N.A., ACHILLE N.P., CRICK NELSON Z., 2020, A Study on the Experimental Investigation of Low Frequency Vibration Wave Assisted Disassembly of Press-Fit Joints, J. Manuf. Processes, 49, 70–81, https://doi.org/10.1016/j.jmap....
 
14.
HALM C., OTTO A., STARK T., SCHAAF P., 2020, Ultrasonic Excitation During Press-Fit Joining of Electrical Contacts, Int. J. Adv. Manuf. Technol., 109/7–8, 2215–2220, https://doi.org/10.1007/s00170....
 
15.
HALM C., OTTO A., STARK T., SCHAAF P., 2018, Enhancing the Retention Force of Press-Fit Connections by Ultrasonic Excitation, Physica Status Solidi (a), 215/6, 1700598, https://doi.org/10.1002/pssa.2....
 
16.
Deutsches Institut für Normung E.V. (DIN), 2017, Pressverbände – Teil 1: Berechnungsgrundlagen und Gestaltungsregeln für Zylindrische Pressverbände (DIN 7190-1:2017-02), https://dx.doi.org/10.31030/24....
 
17.
Deutsches Institut für Normung E.V. (DIN), 1991, Allgemeintoleranzen: Toleranzen für Längen und Winkelmaße ohne Einzelne Toleranzeintragung – Identisch Mit ISO 2768-1:1989 (DIN ISO 2768-1:1991-06), https://dx.doi.org/ 10.31030/2458559.
 
18.
Japanese Standards Association (JSA), 2023, Carbon Steels for Machine Structural Use (JIS G 4051:2023).
 
19.
RAJ A.P., BHATTI A., DHANISH P.B., 2020, Combined Effect of Cylindricity, Roundness and Roughness on Axial Load-Carrying Ability of Interference Fits, Proc. Inst. Mech. Eng., Part J: J. Eng. Tribology, 234/11, 1697–1711, https://doi.org/10.1177/135065....
 
20.
WU X., LI C., SUN S., TONG R., LI Q., 2019, A Study on the Heating Method and Implementation of a Shrink-Fit Tool Holder, Energies, 12/18, 3416, https://doi.org/10.3390/en1218....
 
21.
KROL R., SIEMIATKOWSKI Z., 2019, The Analysis of Shrink-Fit Connection – The Methods of Heating and the Factors Influencing the Distribution of Residual Stresses, Heliyon, 5(11)., https://doi.org/10.1016/j.heli.... 2019.e02839.
 
22.
LOC N.H., PHONG L.V., 2022, Study of Interference Fit Between Steel and Brass Parts, EUREKA: Phys. and Eng., 5, 140–149, https://doi.org/10.21303/2461-....
 
23.
LOC N.H., PHONG L.V., 2023, Effects of Nickel Plating on Interference Fit Between Medium Carbon Steel and Copper–Zinc Alloy Parts, Met., 13/2, 247, https://doi.org/10.3390/met130....
 
24.
PERSSON B.N., 2022, Influence of Surface Roughness on Press Fits, Tribology Lett., 71/1, https://doi.org/ 10.1007/s11249-022-01688-y.
 
25.
American Society of Mechanical Engineers (ASME), 2020, Preferred Metric Limits and Fits (B4.2-1978:R2020).
 
26.
HUANG B., WANG W., XIONG Y., WU X., LIU J., LIU C., WANG D., 2023, Investigation of Force Modelling in Ultrasonic Vibration-Assisted Drilling SICF/Sic Ceramic Matrix Composites, J. Manuf. Processes, 96, 21–30, https://doi.org/10.1016/j.jmap....
 
27.
SINGH R.R., SINGH I., KUMAR S.A., 2023, Ultrasonic Welding of Printed/Molded Sustainable Polymer Specimens with Energy Directors, Ultrason., 134, 107078, https://doi.org/10.1016/j.ultr....
 
28.
FARTASHVAND V., ABDULLAH A., SADOUGH VANINI S.A., 2017, Investigation of Ti-6Al-4V Alloy Acoustic Softening, Ultrason. Sonochem., 38, 744–749, https://doi.org/10.1016/j.ults....
 
29.
NAIK A.S., SURYAWANSHI D., KUMAR M., WAGHMARE R., 2021, Ultrasonic Treatment: A Cohort Review on Bioactive Compounds, Allergens and Physico-Chemical Properties of Food, Current Res. Food Sci., 4, 470–477, https://doi.org/10.1016/j.ults....
 
30.
Japanese Standards Association (JSA), 2022, Geometrical Product Specifications (GPS) – Surface Texture: Profile Method – Terms, Definitions and Parameters (JIS B 0601:2022).
 
eISSN:2391-8071
ISSN:1895-7595
Journals System - logo
Scroll to top