Flexure-Based Dynamometer for Vector-Valued Milling Force Measurement
More details
Hide details
IFT – Institute for Production Engineering and Photonic Technologies, TU Wien, Austria
University of Tennessee, Department of Mechanical, Aerospace, and Biomedical Engineering, United States
Department of Mechanical Engineering, University of California, Berkeley, United States
David Leitner   

IFT – Institute for Production Engineering and Photonic Technologies, TU Wien, Getreidemarkt 9 / 311, 1060, Wien, Austria
Submission date: 2023-01-16
Final revision date: 2023-02-13
Acceptance date: 2023-02-14
Online publication date: 2023-02-16
Publication date: 2023-04-12
Journal of Machine Engineering 2023;23(1):47–56
Variation in cutting forces with cutting parameter selection, tool geometry, and wear status plays an important role for milling process evaluation and modeling. While piezoelectric force measurement is commercially available, it is often considered a precise but expensive method. This paper presents a novel solution for vector-valued cutting force measurement. The table-mounted, flexure-based kinematics provide three degrees of freedom that are used to measure the in-process milling force vector components in the working plane by low-cost optical sensors. Based on analytical models and FEM analysis, an appropriate design was derived. The assembly and testing of the developed dynamometer are presented. A test setup based on a machining center was used for the system evaluation and the data are compared to the forces measured by a commercially available, piezoelectric cutting force dynamometer.
FLEISCHER J., DEUCHERT M., RUHS C., KÜHLEWEIN C., HALVADJIYSKY G., SCHMIDT C., 2008, Design and Manufacturing of Micro Milling Tools, Microsyst. Technol., 14, 1771–1775.
DENKENA B., BIERMANN D., 2014, Cutting Edge Geometries, CIRP Annals - Manufacturing Technology, 63, 631–653.
BRECHER C., WECK M., 2017, Werkzeugmaschinen Fertigungssysteme 2, Springer-Verlag GmbH Berlin Heidelberg.
ABELE E., ALTINTAS Y., BRECHER C., 2010, Machine Tool Spindle Units, CIRP Annals – Manufacturing Technology, 59, 781–802.
KIENZLE O., 1954, Einfluss der Wärmebehandlung von Stählen auf die Hauptschnittkraft beim Drehen, Stahl und Eisen, 74, 530–551.
DENKENA B., TÖNSHOFF H.-K., 2010, Spanen, Springer-Verlag GmbH Berlin Heidelberg.
MICHELETTI G.F., KÖNIG W., VICTOR H.R., 1976, In Process Tool Wear Sensors for Cutting Operations, CIRP Annals, 25/2, 483–496.
BYRNE G., DORNFELD D., INASAKI I., KETTELER G., KÖNIG W., TETI R., 1995, Tool Condition Monitoring (TCM) — The Status of Research and Industrial Application, CIRP Annals, 44/2, 541–567.
TETI R., JEMIELNIAK K., O’DONNELL G., DORNFELD G., 2010, Advanced Monitoring of Machining Operations, CIRP Annals – Manufacturing Technology, 59, 717–739.
WYEN C.-F., WEGENER K., 2010, Influence of Cutting Edge Radius on Cutting Forces in Machining Titanium, CIRP Annals – Manufacturing Technology, 59, 93–96.
MEDYK P., KASPRZAK M., 2020, Approach to Feed Drive Load Measurements in Heavy Turning, Journal of Machine Engineering, 20/4, 41–58.
KASPRZAK M., PYZALSKI M., 2021, Testing of Force Sensors for the Active Measurement and Limitation of Axial Loads in Heavy Turning, Journal of Machine Engineering, 21/4, 106–117.
AGGARWAL S., NESIC N., XIROUCHAKIS P., 2013, Cutting Torque and Tangential Cutting Force Coefficient Identification from Spindle Motor Current, Internat. Journal of Advanced Manufacturing Techn., 65, 81–95.
XU X., ZHANG Y., LI Y., LI Y., 2022, Machine Learning Cutting Forces in Milling Processes of Functionally Graded Materials, Advances in Computational Intelligence (ADCI), 2, 25.
TETI R., MOURTZIS D., D’ADDONA D., CAGGIANO A., 2022, Process Monitoring of Machining. CIRP Annals, 71/2, 529–552.
BLEICHER F., BIERMANN D., DROSSEL W., MÖHRING H.-C., ALTINTAS Y., Forthcoming 2023, Sensor and Actuator Integrated Tooling Systems, CIRP Annals.
DENKENA B., DAHLMANN D., BOUJNAH H., 2016, Sensory Workpieces for Process Monitoring –an Approach, Procedia Technology, 26, 129–135.
DENKENA B., DAHLMANN D., KIESNER J., 2016, Production Monitoring Based on Sensing Clamping Elements, Procedia Technology, 26, 235–244.
PALALIC M., MÖHRING H.-C., MAIER W., MENDOZA A., RIEMEIER F., 2020, Multiaxial Force Platform with Disturbance Compensation for Machine Tools, Journal of Machine Engineering, 20/3, 5–16.
GOMEZ M., SCHMITZ T., 2019, Displacement-Based Dynamometer for Milling Force Measurement, Procedia Manufacturing, 34, 867–875.
GOMEZ M., SCHMITZ T., 2020, Low-cost, Constrained-Motion Dynamometer for Milling Force Measurement, Manufacturing Letters, 25, 34–39.
GOMEZ M., HONEYCUTT A., SCHMITZ T., 2021, Hybrid Manufactured Dynamometer for Cutting Force Measurement, Manufacturing Letters, 29, 65–69.
GOMEZ M., SCHMITZ T., 2022, Stability Evaluation for a Damped, Constrained-motion Cutting Force Dynamometer, Journal of Manufacturing and Materials Processing, 6/1, 23, 1–26.
Deutsches Institut für Normung e.V., 1982, DIN 6584-5 - Begriffe der Zerspantechnik - Kräfte Energie Arbeit Leistungen, Berlin.
RUBEO M., SCHMITZ T., 2016, Mechanistic Force Model Coefficients: A Comparison of Linear Regression and Nonlinear Optimization, Journal of the International Societies for Precision Engineering and Nanotechnology, 45, 311–321.
KORKMAZ E., GOZEN B.A., BEDIZ B., OZDOGANLAR O.B., 2017, Accurate Measurement of Microma-chining Forces Through Dynamic Compensation of Dynamometers, Journal of the International Societies for Precision Engineering and Nanotechnology, 49, 356–376.
ZAMEROSKI R., GOMEZ M., SCHMITZ T., 2022, Geometry-Based, Gaussian Profile Model for Optical Knife-Edge Displacement Sensor, Precision Engineering, 73, 470–476.
SCHMITZ T., SMITH S., 2019, Machining Dynamics: Frequency Response to Improved Productivity, Second Edition, Springer, New York, NY.