The successful selection process of industrial robots (IRs) for today’s Cyber-Physical Systems is an important topic and there are different possibilities to solve the task. The primary task is to estimate the existing IR selection systems according to the suitability analysis and to highlight the main positive features and problematic areas. The objective of the reverse task is to carry out the sensitivity analysis of the existing robot-based manufacturing systems. The matching of these two approaches helps decision makers to develop the main principles of IR selection in today`s multidimensional and fast-changing economic world.
REFERENCES(23)
1.
GEISERT C., HOHWIELER E., UHLMANN E., 2017, Intelligent production systems in the era of Industrie 4.0 – changing mind sets and business models, Journal of Machine Engineering, 17/2, 5–24.
KANGRU T., RIIVES J., OTTO T., POHLAK M., MAHMOOD K., 2018, Intelligent Decision Making Approach for Performance Evaluation of a Robot Based Manufacturing Cell. Proceedings of ASME Mechanical Engineering Congress and Exposition, 2, ASME, USA, 1–10.
EFTHYMIOU K., PAGOROPOULOS A., PAPAKOSTAS N., MOURTZIS D., CHRYSSOLOURIS G., 2012, Manufacturing Systems Complexity Review: Challenges and Outlook, Procedia CIRP, 3, 644–649.
LÕUN K., RIIVES J., OTTO T., 2011, Evaluation of operation expedience of technological resources in a manufacturing network. Estonian Journal of Engineering, 17/1, 51–65.
ATHAWALE V.M., CHAKRABORTY S., 2011, A comparative study on the ranking performance of some multi-criteria decision-making methods for industrial robot selection, International Journal of Industrial Engineering Computations, 2, 831–850.
ÖRKCÜ H.H., ÖRKCÜ M., 2015, Data Envelopment Analysis Cross Efficiency Evaluation Approach to the Technology Selection, Gazi University Journal of Science Part A: Engineering and Innovation, 3/1, 1–14.
KUMAR, N.R., 2015, Robot Selection Using Analytic Hierarchy Process and System of Equations of Matrices, Elixir International Journal, Mechanical Engineering, 79, 30511–30513.
IC Y.T., YURDAKUL M.,. DENGIZ B., 2012, Development of a decision support system for robot selection, Robotics and Computer-Integrated Manufacturing, 29, 142–157.
YAZGAN H.R., et al., 2009, An ERP software selection process with using artificial neural network based on analytic network process approach, Expert Systems with Applications, 36, 9214–9222.
KANGRU T., RIIVES J., MAHMOOD K., OTTO T., 2019, Suitability Analysis of Using Industrial Robots in Manufacturing, Proceedings of the Estonian Academy of Sciences, 68/4, 383–388.
EL HASSANI I. et al., 2019, Artificial Intelligence and Machine Learning to Predict and Improve Efficiency in Manufacturing Industry, Mathematics, Computer Science Published in ArXiv 2019, Retrieved from https://www.researchgate.net/p....
We process personal data collected when visiting the website. The function of obtaining information about users and their behavior is carried out by voluntarily entered information in forms and saving cookies in end devices. Data, including cookies, are used to provide services, improve the user experience and to analyze the traffic in accordance with the Privacy policy. Data are also collected and processed by Google Analytics tool (more).
You can change cookies settings in your browser. Restricted use of cookies in the browser configuration may affect some functionalities of the website.