Process Monitoring in End Milling Using Polar Figures
 
More details
Hide details
1
WZL der RWTH Aachen, Campusboulevard 30, D-52072 Aachen, Germany
 
 
Submission date: 2019-11-27
 
 
Acceptance date: 2020-03-13
 
 
Online publication date: 2020-09-25
 
 
Publication date: 2020-09-25
 
 
Journal of Machine Engineering 2020;20(3):95-105
 
KEYWORDS
ABSTRACT
Knowledge of the tool wear state in machining has become an important issue in research and industrial application. Current systems use the spindle power or cutting force as measured variable and refer it to a taught set point. However, this method lacks the ability to adapt to new work piece geometries. A new approach focusses on the tool instead of the work piece, and uses a sensory tool holder with integrated strain gauges. This tool holder provides polar figures whose shapes relate to the engagement conditions and whose area is a function of the tool load. As the tool load increases with tool wear, the area of the polar figures provides information about the tool wear status, and with knowledge about the engagement conditions, the model can be calibrated.
ACKNOWLEDGEMENTS
This research was funded by the AiF – ZIM project “Modellentwicklung zur Berücksichtigung von Prozess-, Maschinen und Werkzeugeinflüssen bei der Verschleißberechnung und -prognose für spanabhebende Werkzeuge” (ZF4040910PO7).
 
REFERENCES (28)
1.
DIN8580:2003-09: Manufacturing processes - Terms and definitions, division, https://dx.doi.org/10.31030/ 9500 683.
 
2.
KLOCKE F., 2011 Manufacturing processes, Berlin, Heidelberg, New York, Springer.
 
3.
AUGSPURGER T., 2019, Thermal Analysis of the Milling Process, Dissertation RWTH, ISBN: 978-3-86359-676-7.
 
4.
BAYRAMOGLU M., DUNGEL Ü., 1998, A systematic investigation on the use of force ratios in tool condition monitoring for turning operations, Trans. Inst. Meas. Control, 20/2, 92–97.
 
5.
DIMLA D.E., 2000, Sensor signals for tool wear monitoring in metal cutting operations – A review of methods, Int. J. Mach. Tool Manuf., 40/8, 1073–1098.
 
6.
KETTELER G., 1996, Prozessüberwachung mit Acoustic-Emission beim Messerkopfstirnfräsen, Dissertation, RWTH Aachen.
 
7.
YOHANNES B., 2013, Industrielle Prozessüberwachung für die Kleinserienfertigung, Berichte aus dem IFW, 03, PZH Verlag.
 
8.
KAUPP M., 2014, Ein Verfahren zur automatischen erzeugung intelligenter prozessüberwachungssysteme, Stuttgart, Fraunhofer Verlag.
 
9.
KAEVER M., 2004, Steuerungsintegrierte fertigungsprozess-überwachung bei spanender Bearbeitung, Dissertation, RWTH Aachen, Shaker Verlag.
 
10.
GHANI J.A., 2009, New regression model and i-Kaz method for online cutting tool wear monitoring, Int. J. of Mechanical, Aerospace, Industrial, Mechatronic and Manufacturing Engineering, 3, 1507–1512.
 
11.
GHANI J.A., 2013, The application of I-kaz-based method for tool wear monitoring using cutting force signal, Procedia Engineering, 68, 461–468.
 
12.
AHMAD M.A.F., NUAWI M.Z., ABDULLAHA S., WAHIDA Z., KARIMB Z., DIRHAMSYAH M., 2015, Development of tool wear machining monitoring using novel statistical analysis method, I-kaz, Procedia Engineering, 101, 335–362.
 
13.
KASIM N.A., 2019, Cutting power wear progression index via signal element variance, Journal of Mechanical Engineering and Sciences, 13, 4596–4612.
 
14.
FUSSEL B., 2015, Real-time tool wear monitoring in milling using a cutting condition independent method, International Journal of Machine Tools & Manufacture, 89, 1–13.
 
15.
CUI Y., 2009, Tool wear monitoring for milling by tracking cutting force model coefficients, Proceedings of the North American Manufacturing, Research Institution of SME, 37.
 
16.
ZHOU Y., XUE W., 2018, A multisensor fusion method for tool condition monitoring in milling, Sensors, 18, 3866–3878.
 
17.
DENKENA B., 2015, Die vernetzte Produktion – Forschungsergebnisse für die praxis, Final report of the SFB 653 collaborate research center, PZH Verlag Hannover, ISBN: 978-3-95900-045-1.
 
18.
SCHMIDT C., 2011, Einflussgrößensensitive simulation und überwachung von fräsprozessen, Berichte aus dem IFW 01/2011, PZH Verlag.
 
19.
LITWINSKI K.M., 2011, Sensorisches spannsystem zur überwachung von zerspanprozessen in der einzelteilfertigung, Berichte aus dem IFW, 02/2011, PZH Verlag.
 
20.
SHENG H., 2012, Model-based tool condition monitoring for ball-nose end milling, PhD-Thesis, National University of Singapore.
 
21.
ALTINTAS Y., YELLOWLEY I., 1987, The identification of radial width and axial depth of cut in peripheral milling, International Journal for Machine Tools and Manufacture, 27/3, 367–381.
 
22.
TARN J.H., TOMIZUKA M., 1989, On-line monitoring of tool and cutting conditions in milling, Journal of Engineering for Industry, 111, 206–212.
 
23.
KWON W.T., CHOI D., 2002, Radial immersion angle estimation using cutting force and predetermined cutting force ratio in face milling, International Journal of Machine Tools & Manufacture, 42, 1649–1655.
 
24.
HWANG J.H., 2003, In-process estimation of radial immersion ratio in face milling using cutting force, International Journal of Advanced Manufacturing Technology, 22, 313–320.
 
25.
CHOI J-G., YANG M-Y., 1999, In-process prediction of cutting depths in end milling, International Journal of Machine Tools and Manufacture, 39/5, 705–721.
 
26.
BERGS T., GOETZ S., 2019, Estimation of engagement conditions using an ANN pattern recognition system on the base of a sensory tool holder, MM Science Journal, 11, DOI: 10.17973/MMSJ.2019_11_2019086.
 
27.
KARPUSCHEWSKI B., Sensoren zur prozessüberwachung beim spanen, Fortschritts-Berichte, 2/581, VDI Verlag, Düsseldorf, ISBN: 3-18-358102-7.
 
28.
KIENCKE U., 2008, Signalverarbeitung, Zeit-Frequenz-Analyse und Schätzverfahren, Oldenburg-Verlag, München.
 
 
CITATIONS (3):
1.
Computational methods for the detection of wear and damage to milling tools
Dimitar Ninevski, Julia Thaler, Paul O'Leary, Thomas Klünsner, Manfred Mücke, Lukas Hanna, Tamara Teppernegg, Martin Treichler, Patrick Peissl, Christoph Czettl
Journal of Manufacturing Processes
 
2.
Analysis of Tool Wear by Using a Cutting Bending Moment Model for Milling Processes
Hsiang-Chun Tseng, Meng-Shiun Tsai, Bu-Ci Yeh, Kuan-Ming Li
International Journal of Precision Engineering and Manufacturing
 
3.
A data-driven model to predict dressing interval during a multi-flute end mill grooving process using a multilayered diamond grinding wheel
Dhananjeyan Jeyaraj, Heinz-Wolfgang Lahmann, Florian Welzel
Procedia CIRP
 
eISSN:2391-8071
ISSN:1895-7595
Journals System - logo
Scroll to top