Simplification of the rolling contact-related lifetime calculation of profiled rail guides with a polynomial regression
More details
Hide details
Faculty of Mechanical Engineering, Institute of Mechatronic Engineering, TU Dresden, Germany
Fraunhofer-Institut für Werkzeugmaschinen und Umformtechnik IWU, Fraunhofer Gesellschaft, Germany
Submission date: 2024-01-30
Acceptance date: 2024-03-15
Online publication date: 2024-03-19
Publication date: 2024-04-02
Corresponding author
Danny Staroszyk   

Faculty of Mechanical Engineering, Institute of Mechatronic Engineering, TU Dresden, Helmholtzstraße 7a, 01069, Dresden, Germany
Journal of Machine Engineering 2024;24(1):60-73
The calculation of the lifespan of profile rail guides is an essential part in the design process of machines. Conventional lifespan models yield good results when calculating lifespan values under a homogeneous distribution of individual rolling contact forces on the raceways. In the case of an uneven load distribution, significantly too low lifespan values are calculated, resulting in a considerable loss of lifetime potential. The novel and experimentally validated rolling contact-based lifespan calculation (RCBL) takes the transferred force on each rolling element into account, resulting in more realistic lifespan values that can be up to 4 times higher than those obtained through the classical method. The disadvantage lies in the complex calculation of the necessary individual rolling contact forces, which until now has been done by using extensive finite element models, along with the computationally intensive optimization problem of the RCBL. To overcome these disadvantages, a method is introduced that efficiently calculates the individual rolling contact forces, taking into account all relevant system elasticities, and pre-solves the RCBL for a variety of potential superimposed load combinations. The results are subsequently approximated through an analytical multiparametric polynomial function and can be utilized with the conventional lifespan formula for rolling bearings.
NEIDHARDT L., 2013, Wälzkontaktbezogene Lebensdauer von Profilschienenführungen – Bewertung der experimentellen Ermittlung des Lebensdauerkennwerts, PhD thesis, TU Dresden.
Bosch Rexroth AG, 2017, Linear Motion Handbook.
DIN 631: Rolling bearings - Testing conditions for the experimental verification of the dynamic load rating of ball carriage or roller carriage profiled rail guides, Deutsches Institut für Normung, March 2020.
DADALAU A., GROH K., REUSS M., VERL A.. 2012, Modeling Linear Guide Systems with CoFEM: Equivalent Models for Rolling Contact, Production Engineering, 6/1, 39–46,
GROSSMANN K., NEIDHARDT L., 2006, FEM-Gestützte Analyse von Profilschienen-Führungssystemen, Teil 1: Technologien und Beispiele zur Untersuchung von Profilschienenführungen und geführten Baugruppen, Zeitschrift für wirtschaftlichen Fabrikbetrieb, 101/9, 517–521,
TONG V.-C., KHIM G., HONG S.-W., PARK C.-H., 2019, Construction and Validation of a Theoretical Model of the Stiffness Matrix of a Linear Ball Guide with Consideration of Carriage Flexibility, Mechanism and Machine Theory, 140, 123–143,
OHTA H., TANAKA K., 2010, Vertical Stiffnesses of Preloaded Linear Guideway Type Ball Bearings Incorporating the Flexibility of the Carriage and Rail, Journal of Tribology, 132/1,
SHAW.D., SU W.L., 2013, Stiffness Analysis of Linear Guideways Without Preload, Journal of Mechanics, 29/2, 281–286,
TAO W., ZHONG Y., FENG H., WANG Y., 2013, Model for Wear Prediction of Roller Linear Guides, Wear, 305/1–2, 260–266,
KONG W., SUN B., WANG B., WEN X., 2015, Dynamic and Stability Analysis of the Linear Guide with Time-Varying, Piecewise-Nonlinear Stiffness by Multi-Term Incremental Harmonic Balance Method, Journal of Sound and Vibration, 346, 265–283,
ZOU H., WANG B., 2015, Investigation of the Contact Stiffness Variation of Linear Rolling Guides Due to the Effects of Friction and Wear During Operation, Tribology International, 92, 472–484,
WANG W., ZHANG Y., LI C., 2017, Dynamic Reliability Analysis of Linear Guides in Positioning Precision, Mechanism and Machine Theory, 116, 451–464,
WANG W., ZHOU Y., WANG H., LI C., ZHANG Y., 2019, Vibration Analysis of a Coupled Feed System with Nonlinear Kinematic Joints, Mechanism and Machine Theory, 134, 562–581,
LI C., XU M., HE G., ZHANG H., LIU Z., HE D., ZHANG Y., 2020, Time-Dependent Nonlinear Dynamic Model for Linear Guideway with Crowning, Tribology International, 151,
LI C., XU M., SONG W., ZHANG H., 2023, A Review of Static and Dynamic Analysis of Ball Screw Feed Drives, Recirculating Linear Guideway, and Ball Screw, International Journal of Machine Tools and Manufacture, 188,
CHRISTOV S., 1997, Einbaugenauigkeit und Querschnittsberechnung von Profilschienenführungen, PhD thesis, TU Dresden,.
OHTA H., KATO S., MATSUMOTO J., NAKANO K., 2005, A Design of Crowning to Reduce Ball Passage Vibrations of a Linear Guideway Type Recirculating Linear Ball Bearing, J. Tribol., Apr. 2005, 127/2, 257–262,
IHLENFELDT S., MÜLLER J., STAROSZYK D., 2019, Lebensdauer von Profilschienenführungen unter Momentenbelastung – Entwicklung Einer Vereinfachten Wälzkontakt-Bezogenen Lebensdauerberechnung für Profilschienenführungen Unter Nick- und Giermomentenbelastung, Gleit- und Wälzlagerungen, 379–384,
IHLENFELDT S., MÜLLER J., STAROSZYK D., 2020, Lifespan of Profile Rail Guides – Developing of a Simplified Rolling Contact Related Life Calculation for profile rail Guides – Part 2, WT Werkstattstechnik, 110/3, 151–158.
ISPAYLAR M.H.. 1997, Betriebseigenschaften von Profilschienen-Wälzführungen. PhD thesis, Würzburg.
SCHEUERMANN M.. 2010, Dynamiksimulation zur Virtuellen Produktentwicklung von Rollenschienen-führungen. Maschinenelemente- und Getriebetechnik-Berichte. Techn. Univ., ISBN 3941438492.
SCHNEIDER M., 1991, Statistisches und Dynamisches Verhalten Beim Einsatz Linearer Schienenführungen Auf Wälzlagerbasis Im Werkzeugmaschinenbau, Phd Thesis.
SARFERT J., LENSSEN S., 1994. Berechnung Wälzgelagerter Linearführungen, Konstruktion 46/6, 209–214.
IHLENFELDT S., MÜLLER, J. STAROSZYK D., 2021, Lifespan Investigations of Linear Profiled Rail Guides at Pitch and Yaw Moments, 294–303, Springer Berlin Heidelberg.
BRÄNDLEIN J., ESCHMANN P., HASBARGEN L., WEIGAND K., 2002, Die Wälzlagerpraxis, Vereinigte Fachverlage GmbH, Mainz.
PEDREGOSA F., VAROQUAUX G., GRAMFORT A., et al., 2011, Scikit-Learn: Machine Learning in Python, Journal of Machine Learning Research, 12, 2825–2830.
Journals System - logo
Scroll to top