Simulative Investigation of the Influence of Different Abrasive Coating Structures in Double Face Grinding
More details
Hide details
1
Technische Universität Berlin, Institute for Machine Tools and Factory Management (IWF), Germany
2
Fraunhofer Institute for Production Systems and Design Technology IPK, Fraunhofer Institute for Production Systems and Design Technology IPK, Pascalstraße 8-9, 10587 Berlin, Germany, Germany
Submission date: 2024-05-30
Final revision date: 2024-11-19
Acceptance date: 2024-11-19
Online publication date: 2024-11-26
Corresponding author
Arunan Muthulingam
Technische Universität Berlin, Institute for Machine Tools and Factory Management (IWF), Pascalstraße 8-9, 10587, Berlin, Germany
KEYWORDS
TOPICS
ABSTRACT
The double face grinding process is a manufacturing process that is used when machining plane-parallel surfaces, for example during the production of bearing rings, wafers, seal and regulator disks. However, there are challenges when machining extremely hard and large components in terms of the required workpiece quality and cost-efficiency. Although the ecological disadvantages of the lapping process are present, it is often used to industrially machine such components. Therefore, the influence of different abrasive coating structures on the cooling lubricant flow was examined using Computational Fluid Dynamics (CFD) simulations. The results of the simulation studies are presented in this article. By choosing a suitable abrasive coating structure that ensures an even distribution of the cooling lubricant, the supply of cooling lubricant and chip removal during the grinding process can be improved. The results of the simulation studies show that radial grooves are unsuitable because the flow of cooling lubricant is not evenly distributed in the inner area of the grinding wheel. This can be optimized by selecting involute grooves. By improving the supply of cooling lubricant, the application range of the double face grinding process can be expanded and enables the environmentally friendly machining of extremely hard and large components with plane-parallel functional surfaces.
REFERENCES (12)
1.
UHLMANN E., HASPER G., HOGHÉ T., HÜBERT C., MIHOTOVIC V., SAMMLER C., 2013, Machining and Finishing of Ceramics, Ceramics Science and Technology, 247–266.
2.
DEJA M., LIST M., LICHTSCHLAG L., UHLMANN E., 2019, Thermal and Technological Aspects of Double Face Grinding of Al2O3 Ceramic Materials, Ceram Int 45/15, 19489–19495.
3.
UHLMANN E., LICHTSCHLAG L., 2020, Analysis of Influencing Factors for the Dressing Process it Double Side Face Grinding, Springer Nature Link, 112, 1571–1581.
4.
JANSSEN, J.M., 2006, Feinschleifen Ersetzt Läppen, WB Werkstatt + Betrieb, 9, 30–32.
5.
UHLMANN E., LIST M., PATRASCHKOV M., TRACHTA G., 2018, A New Process Design for Manufacturing Sapphire Wafers, Precision Engineering, 53, 146–150.
6.
ARDELT T., 2001, Einfluss der Relativbewegung auf den Prozess und das Arbeitsergebnis beim Planschleifen mit Planetenkinematik, Dissertation TU Berlin, Berichte aus dem Produktionstechnischen Zentrum, IPK.
7.
LIST M., 2019, Ortsabhängiges Verschleißmodell für das Doppelseitenplanschleifen mit Planetenkinematik, Dissertation TU Berlin, Berichte aus dem Produktionstechnischen Zentrum Berlin, Hrsg, Verlag.
8.
DENNIS P., PREISING D., SOWADA J., 2007, Prozesssicheres Doppelseitenplanschleifen, Schleifen + Polieren 11/4, 4–11.
9.
UHLMANN E., HOGHÉ T., 2012, Wear Reduction at Double Face Grinding with Planetary Kinematics, Prod. Eng., 6/3, 237–242.
10.
EGGER R., 2001, Planschleifen von Keramik mit Zykloidischer Wirkbewegung, Dissertation IFW Hannover, Fortschrittberichte VDI. Düsseldorf, VDI-Verl.
11.
KIRCHGATTER M., 2010, Einsatzverhalten Genuteter CBN-Schleifscheiben mit Keramischer Bindung beim Außenrund-Einstechschleifen, Dissertation, TU Berlin.
12.
UHLMANN E., HOCHSCHILD L., 2013, Tool Optimization for High Speed Grinding, Production engineering, 7, Jg, 2–3, 185—193.