The Combination of Taguchi – Entropy – WASPAS - PIV Methods for Multi-Criteria Decision Making when External Cylindrical Grinding of 65G Steel
Do Duc Trung 1  
 
More details
Hide details
1
Faculty of Mechanical Engineering, Hanoi University of Industry, Viet Nam
CORRESPONDING AUTHOR
Do Duc Trung   

Faculty of Mechanical Engineering, Hanoi University of Industry, Cau Dien, 100000, Hanoi, Viet Nam
Submission date: 2021-10-11
Final revision date: 2021-11-23
Acceptance date: 2021-11-25
Online publication date: 2021-12-02
Publication date: 2021-12-08
 
Journal of Machine Engineering 2021;21(4):90–105
 
KEYWORDS
TOPICS
ABSTRACT
This paper presents a study on the multi-creteria decision making in the external cylindrical grinding process of 65G steel. An aluminum oxide grinding wheel was used in the experimental process. The experimental matrix was designed according to the Taguchi method with twenty-seven experiments. Five parameters were used to design the experimental matrix including workpiece velocity, feed rate, depth of cut, dressing feed rate, and dressing depth of cut. The surface roughness and Material Removal Rate (MRR) were determined for each experiment. This is the first time that the Weighted Aggregates Sum Product ASsessment (WASPAS) and Proximity Indexed Value (PIV) methods were used to make the multi-criteria decision for grinding process. The weighs of ouput criteria (surface roughness and MRR) were determined by Entropy method. Both WASPAS and PIV methods determined an experiment that simultaneously ensured the “minimum value” of surface roughness and “maximum value” of MRR.
 
REFERENCES (44)
1.
IRANI R.A., BAUER R.J., WARKENTIN A., 2005, A Review of Cutting Fluid Application in the Grinding Process, International Journal of Machine Tools & Manufacture, 45/15, 1696–1705.
 
2.
VU N.P., NGUYEN Q.T., TRAN T.H., LE H.K., NGUYEN A.T., LUU A.T., NGUYEN V.T., LE X.H., 2019, Optimization of Grinding Parameters for Minimum Grinding Time When Grinding Tablet Punches by CBN Wheel on CNC Milling Machine, Applied Sciences, 9/5, 1–9.
 
3.
TAO Z., YAOYAO S., LAASKO S., JINMING Z., 2017, Investigation of the Effect of Grinding Parameters on Surface Quality in Grinding of TC4 Titanium Alloy, Procedia Manufacturing, 11, 2131–2138.
 
4.
MARINESCU I.D., HITCHINER M.P., UHLMANN E., ROWE W.B., INASAKI I., 2006, Handbook of Machining with Grinding Wheels, CRC Press.
 
5.
DANESHI A., JANDAGHI N., TAWAKOLI T., 2014, Effect of Dressing on Internal Cylindrical Grinding, Procedia CIRP, 14, 37–41.
 
6.
KARANDE R.J., JADHAV S.M., KSHITIJ R.P., NANWATKAR R.K., 2017, Optimization of Cylindrical Grinding Machine Parameters for Minimum Surface Roughness and Maximum MRR, Global Research and Development Journal for Engineering, 2/5, 62–68.
 
7.
SINGH K., KUMAR P., GOYAL K., 2014, To Study the Effect of Input Parameters on Surface Roughness of Cylindrical Grinding of Heat Treated AISI 4140 Steel, American Journal of Mechanical Engineering, 2/3, 58–64.
 
8.
OZAY C., BALLIKAYA H., SAVAS V., 2016, Application of the Taguchi Method to Select the Optimum Cutting Parameters for Tangential Cylindrical Grinding of AISI D3 Steel, Materials and Technology, 50/1, 81–87.
 
9.
SINGH T., GOYAL K., KUMAR P., 2014, To Study the Effect of Process Parameters for Minimum Surface Roughness of Cylindrical Grinded AISI 1045 Steel, Manufacturing Science and Technology, 2/3, 56–61.
 
10.
TU H.X., THAO L.P., HONG T.T, NGA N.T.T., TRUNG D.D., GONG J., PI V.V., 2018, Influence of Dressing Parameters on Surface Roughness of Workpiece for Grinding Hardened 9XC Tool Steel, IOP Conf. Series: Materials Science and Engineering, 542, 1–7.
 
11.
MOHITE D.D., NEERAJ T., SANDEEP S., UDAYHANKAR M., 2017, Modelling and Optimization of Dressing Parameters of CNC Cylindrical Grinding Wheel for Minimum Surface Roughness, International Journal of Engineering Research and General Science, 5/4, 102–111.
 
12.
PATEL D.K., GOYAL D., PABLA B.S., 2018, Optimization of Parameters in Cylindrical and Surface Grinding for Improved Surface Fnish, Royal Society Open Science, 5/5, 1–11.
 
13.
PRASAS S.D., VISHAL S., VISHAL S., BHARGAV K., ROGITH K., 2021, Cylindrical Grinding - Experimental Investigation and Taguchi Study of Process Parameters on EN31 and Mild Steel, IOP Conf. Series: Materials Science and Engineering, 1057, 1–15.
 
14.
MEKALA K., CHANDRADAS J., CHANDRASEKARAN K., KANNA T.T.M., RAMESH E., BABU R.N., 2014, Optimization of Cylindrical Grinding Parameters of Austenitic Stainless Steel Rods (AISI 316) by Taguchi Method, International Journal of Mechanical Engineering and Robotics Research, 3/2, 208–215.
 
15.
HUNG L.X., HONG T.T., KY L.H., TUNG L.A, NGA N.T.T., PI N.V., 2018, Optimum Dressing Parameters for Maximum Material Removal Rate When Internal Cylindrical Grinding Using Taguchi method, International Journal of Mechanical Engineering and Technology, 9/12, 123–129.
 
16.
TRUNG D.D., THIEN N.V., NGUYEN N.T., 2021, Application of TOPSIS Method in Multi-Objective Optimization of the Grinding Process Using Segmented Grinding Wheel, Tribology in Industry, 43/1, 12–22.
 
17.
REKAH R., BASKAR N., PADMANABAN M.R.A, PALANISAMY A., 2020, Optimization of Cylindrical Grinding Process Parameters Using Meta-Heuristic Algorithms, Indian Journal of Engineering & Materials Sciences, 27, 389–395.
 
18.
HUNG L.X., PI N.V., HONG T.T., KY L.H., LIEN V.T. TUNG L.A., LONG B.T., 2018, Multi-objective Optimization of Dressing Parameters of Internal Cylindrical Grinding for 9CrSi Aloy Steel Using Taguchi Method and Grey Relational Analysis, Materials Today: Proceedings, 18, 2257–2264.
 
19.
RUDRAPATI R., BANDYOPADHYAY A., KUMAR P., 2018, Parametric Optimization of Cylindrical Grinding Process through Hybrid Taguchi Method and RSM Approach using Genetic Algorithm, Iranian Journal of Mechanical Engineering, 19/1, 34–62.
 
20.
WANG C.L., LAI Y.J., LIU T.Y., 1993, A New Approach for Multiple Objective Decision Making, Computers & Operations Research, 20/8, 889–899.
 
21.
OPRICOVIC S., TZENG G.H., 2004, Compromise Solution by MCDM Methods: A Comparative Analysis of VIKOR and TOPSIS, European Journal of Operational Research, 156/2, 445–455.
 
22.
BRAUERS W., 2004, Optimization Methods for a Stakeholder Society. A Revolution in Economic Thinking by Multi-Objective Optimization, Kluwer Academic Publishers.
 
23.
TRIANTAPHYLLOU E., 2020, Multi-criteria Decision Making Methods: A Comparative Study, Springer – Science + Busines media, Springer US.
 
24.
PEREZ E.C, LAMATA M.T., VERDEGAY J.L., 2016, RIM-Reference Ideal Method in Multicriteria Decision Making, Information Sciences, 337/10, 1–10.
 
25.
ZAVASDSKAS E.K., TURSKIS Z., ANTUCHEVICIENE J., ZAKAREVICIUS A., 2012, Optimization of Weighted Aggregated Sum Product Assessment, Electronics and Electrical Engineering, 122/6, 3–6.
 
26.
MUFAZZAL S., MUZAKKIR S.M., 2018, A New Multi-Criterion Decision Making (MCDM) Method Based on Proximity Indexed Value for Minimizing Rank Reversals, Computers & Industrial Engineering, 119, 427–438.
 
27.
KHAN N.Z., ANSARI T.S.A., SIDDIQUEE A.N., KHAN Z.A., 2019, Selection of E-Learning Websites Using a Novel Proximity Indexed Value (PIV) MCDM method, Journal of Computers in Education, 6, 241–256.
 
28.
WAKEEL S., BINGOL S., BASHIR M.N., AHMAD S., 2021, Selection of Sustainable Material for the Manufacturing of Complex Automotive Products Using a New Hybrid Goal Programming Model for Best Worst Method–Proximity Indexed Value method, Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 235/2, 1–15.
 
29.
ULUTAS A., KARRAKOY C., 2019, An Analysis of the Logistics Performance Index of EU Countries with an Integrated MCDM Model, Economics and Business Review, 5/4, 49–69.
 
30.
RAIGAR J., SHARMA V.S., SRIVASTAVA S., CHAND R., SINGH J., 2020, A Decision Support System for the Selection of an Additive Manufacturing Process Using a New Hybrid MCDM Technique, Sādhanā, 45/101, 1–14.
 
31.
JAYANT R., SINGH S., GARG S.K., 2018, An Integrated Approach with MOORA, SWARA, and WASPAS Methods for Selection of 3PLSP, Proceedings of the International Conference on Industrial Engineering and Operations Management, 2497–2509.
 
32.
DARJAN K., DRAGISA S., SNEZANA U., MAKSIMVIC M., 2016, An approach to personnel selection based on Swara and Waspas methods, Journal of Economics, Management and Informatics, 7/1, 1–11.
 
33.
YAZDANI M., ZAVADSKAS E. K., IGNATIUS J., ABAD M.D., 2016, Sensitivity Analysis in MADM Methods: Application of Material Selection, Inzinerine Ekonomika-Engineering Economics, 27/4, 382–391.
 
34.
ONAJITE O., OKE S.A., 2021, The Application of WSM, WPM and WASPAS Multicriteria Methods for Optimum Operating Conditions Selection in Machining Operations, Urnal Rekayasa Sistem Industri, 10/1, 1–14.
 
35.
VYGANTAS B., KAZIMIERAS E.Z., ZENONAS T., 2013, Multi-Criteria Selection of a Deep-Water Port in Klaipeda, Procedia Engineering, 57, 144–148.
 
36.
LIU J.D., WANG G.C., WANG B.L., CHEN K.M., 2007, Study on the Formation of Grind-hardening of Steel AISI 1066, Key Engineering Materials, 329, 57–62.
 
37.
LIU J., XIONG J., YUAN W., 2012, Experiment Study on Grinding Force of 65Mn Steel in Grinding-Hardening Machining, Lecture Notes in Electrical Engineering, 173, 239–246.
 
38.
TRUNG D.D., 2021, Influence of Cutting Parameters on Surface Roughness in Grinding of 65G Steel, Tribology in Industry, 43/1, 167–176.
 
39.
HIEU T.T., THAO N.X., THUY L.T.M., 2019, Application of MOORA and COPRAS Models to Select Materials for Mushroom Cultivation, Vietnam Journal of Agricultural Sciences, 17/4, 32–2331.
 
40.
DEAN A., VOSS D., DRAGULJIC D., 2007, Design and Analysis of Experiments - Second Edition, Springer.
 
41.
MALKIN S., GUO C., 2008, Grinding technology: Theory and Applications of Machining with Abrasives, New York: Industrial Press.
 
42.
TIEN D.H., TRUNG D.D., THIEN N.V. NGUYEN N.T, 2021, Multi-Objective Optimization of the Cylindrical Grinding of SCM440 Steel Using Reference Selection Index Method, Journal of Machine Engineering, 21/3, 110-123.
 
43.
MALKIN S., ANDERSON R.B., 1974, Thermal Aspects of Grinding, Part 1 – Energy Partition, Journal of Manufacturing Science and Engineering 96/4, 1177–1183.
 
44.
TRUNG D.D., 2021, A Combination Method for Multi-Criteria Decision Making Problem in Turning Process, Manufacturing Review, 8/26, 1–17.
 
eISSN:2391-8071
ISSN:1895-7595