Accuracy in Force Estimation Applied on a Piezoelectric Fine Positioning System for Machine Tools
Eckart Uhlmann 1, 2,   Mitchel Polte 1, 2,   Florian Triebel 1  
,   Rasmus Overbeck 1,   Simon Thom 1
 
More details
Hide details
1
Institute for Machine Tools and Factory Management IWF, TU Berlin, Germany
2
Institute for Production Systems and Design Technology IPK, Fraunhofer, Germany
CORRESPONDING AUTHOR
Florian Triebel   

Institute for Machine Tools and Factory Management IWF, TU Berlin, Pascalstraße 8 - 9, 10587, Berlin, Germany
Submission date: 2020-11-30
Final revision date: 2021-03-03
Acceptance date: 2021-03-05
Online publication date: 2021-06-10
 
 
KEYWORDS
TOPICS
ABSTRACT
In order to improve the accuracy of machine tools, the use of additional active modules meeting the requirements of the “Plug & Produce” approach is focused. In this context one approach is the installation of a high precision positioning table for online compensation of machine tool deflections. For the model-based determination of the deflection, the knowledge of the effecting process force is crucial. This article examines the use of displacement sensors for force estimation in a piezoelectric system. The method is implemented on a high precision positioning table applicable in milling machine tools. In order to compensate nonlinear effects of piezoelectric actuators, a hysteresis operator is implemented. Experimental investigations are carried out to quantify the influence of preload stiffness, preload force and workpiece weight. Finally, a resolution d ≤ 78 N could be achieved and further improvements to meet the requirements for online compensation of machine tool deflection are discussed.
 
REFERENCES (16)
1.
SPUR G., 1996, Die Genauigkeit von Maschinen: Eine Konstruktionslehre, Hanser, Munich, Germany.
 
2.
SCHLEIPEN M., LÜDER A., SAUER O., FLATT H., JASPERNEITE J., 2015, Requirements and Concept for Plug-and-Work: Adaptivity in the context of Industry 4.0, Automatisierungstechnik, 63/10, 801–820.
 
3.
HABIBI M., AREZOO B., VAHEBI NOJEDEH M., 2011, Tool Deflection and Geometrical Error Compensation by Tool Path Modification, International Journal of Machine Tools and Manufacture, 51/6, 439–449.
 
4.
DENKENA B., MÖHRING H.-C., WILL J.C., 2007, Tool Deflection Compensation with an Adaptronic Milling Spindle, in: International Conference on Smart Machining Systems (ICSMS), Gaithersburg, USA.
 
5.
HEO S., LEE M., KIM S.H., LEE W., MIN B.K., 2015, Compensation of Tool Deflection in Micromilling Using Workpiece Holder Control Device, Int. J. Precis. Eng. Manuf., 16/6, 1205–1208.
 
6.
DENKENA B., BOUJNAH H., 2018, Feeling Machines for Online Detection and Compensation of Tool Deflection in Milling, CIRP Annals, 67/1, 423–426.
 
7.
KALLAGE F., 2007, Einsatz Magnetischer Aktor- und Führungseinheiten zur Erhöhung der Bahngenauigkeit von Hochgeschwindigkeitsfräsmaschinen, Berichte aus dem IFW, PZH Produktionstechnisches Zentrum GmbH, Garbsen, Germany.
 
8.
LISELI J.B., AGNUS J., LUTZ P., RAKOTONDRABE M., 2020, An Overview of Piezoelectric Self-Sensing Actuation for Nanopositioning Applications: Electrical Circuits, Displacement, and Force Estimation, IEEE Trans. Instrum. Meas., 69/1, 2–14.
 
9.
RAKOTONDRABE M., IVAN I.A., KHADRAOUI S., LUTZ P., CHAILLET N., 2015, Simultaneous Displacement/Force Self-Sensing in Piezoelectric Actuators and Applications to Robust Control, IEEE/ASME Trans. Mechatron., 20/2, 519–531.
 
10.
IVAN I.A., RAKOTONDRABE M., LUTZ P., CHAILLET N., 2009, Current Integration Force and Displacement Self-Sensing Method for Cantilevered Piezoelectric Actuators, The Review of Scientific Instruments, 80/12.
 
11.
IVAN I.A., RAKOTONDRABE M., LUTZ P., CHAILLET N., 2009, Quasistatic Displacement Self-Sensing Method for Cantilevered Piezoelectric Actuators, The Review of Scientific Instruments, 80/6.
 
12.
KAWAMATA A., KADOTA Y., HOSAKA H., MORITA T., 2008, Self-Sensing Piezoelectric Actuator Using Permittivity Detection, Ferroelectrics, 368/1, 194–201.
 
13.
ISLAM M., SEETHALER R., MUMFORD D., 2011, Hysteresis Independent On-Line Capacitance Measurement for Piezoelectric Stack Actuators, 24th Canadian Conference on Electrical and Computer Engineering (CCECE), IEEE, 1149–1153.
 
14.
ZARIF MANSOUR S., SEETHALER R., 2018, Simultaneous Quasi-Static Displacement and Force Self-Sensing of Piezoelectric Actuators by Detecting Impedance, Sensors and Actuators A: Physical, 274, 272–277.
 
15.
KIANINEJAD K., THOM S., KUSHWAHA S., UHLMANN E., 2016, Add-on Error Compensation Unit as Sustainable Solution for Outdated Milling Machines, Procedia CIRP, 40, 174–178.
 
16.
RAKOTONDRABE M., 2012, Classical Prandtl-Ishlinskii Modeling and Inverse Multiplicative Structure to Compensate Hysteresis in Piezoactuators, American Control Conference, Montréal, Canada.
 
eISSN:2391-8071
ISSN:1895-7595