Cutting Force Prediction of Ti6Al4V using a Machine Learning Model of SPH Orthogonal Cutting Process Simulations
 
More details
Hide details
1
IWF, ETH Zürich, Switzerland
 
2
IWF/inspire, ETH Zürich, Switzerland
 
3
Federal Office of Meteorology & Climatology, MeteoSwiss, Switzerland, Switzerland
 
 
Submission date: 2022-02-06
 
 
Final revision date: 2022-03-05
 
 
Acceptance date: 2022-03-07
 
 
Online publication date: 2022-03-10
 
 
Publication date: 2022-03-30
 
 
Corresponding author
Hagen Klippel   

IWF, ETH Zürich, Switzerland
 
 
Journal of Machine Engineering 2022;22(1):111-123
 
KEYWORDS
TOPICS
ABSTRACT
The prediction of machining processes is a challenging task and usually requires a large experimental basis. These experiments are time-consuming and require manufacturing and testing of different tool geometries at various process conditions to find optimum machining settings. In this paper, a machine learning model of the orthogonal cutting process of Ti6Al4V is proposed to predict the cutting and feed forces for a wide range of process conditions with regards to rake angle, clearance angle, cutting edge radius, feed and cutting speed. The model uses training data generated by virtual experiments, which are conducted using physical based simulations of the orthogonal cutting process with the smoothed particle hydrodynamics (SPH). The ML training set is composed of input parameters, and output process forces from 2500 instances of GPU accelerated SPH simulations. The resulting model provides fast process force predictions and can consider the cutter geometry in comparison to classical analytical approaches.
REFERENCES (37)
1.
KIENZLE O., 1952, Die Bestimmung von Kräften und Leistungen an spanenden Werkzeugen und Werkzeugma-schinen, VDI-Z, 94, 299–305.
 
2.
ERNST H., 1938, Physics of Metal Cutting, Cincinnati Milling Machine Company.
 
3.
MERCHANT M.E, 1945, Mechanics of the Metal Cutting Process. II. Plasticity Conditions in Orthogonal Cutting, Journal of applied physics, 16/6, 318–324.
 
4.
OXLEY P.L.B., 1989, The Mechanics of Machining: An Analytical Approach to Assesing Machinability, Ellis Horwood.
 
5.
ADIBI-SEDEH A.H., MADHAVAN V., BAHR B., 2003, Extension of Oxley’s Analysis of Machining to Use Different Material Models, J. Manuf. Sci. Eng. 125/4, 656–666.
 
6.
LALWANI D.I.; MEHTA N.K., JAIN P.K., 2009, Extension of Oxley's Predictive Machining Theory for Johnson and Cook Flow Stress Model, Journal of Materials Processing Technology, 209/12–13, 5305–5312.
 
7.
ARRAZOLA P.J, ÖZEL T., UMBRELLO D., DAVIES M., JAWAHIR I.S., 2013, Recent Advances in Modelling of Metal Machining Processes, Cirp Annals, 62/2, 695–718.
 
8.
SRIDHAR P., PRIETO J.M.R., DE PAYREBRUNE K.M., 2020, Discretization Approaches to Model Orthogonal Cutting with Lagrangian, Arbitrary Lagrangian Eulerian, Particle Finite Element Method and Smooth Particle Hydrodynamics Formulations, Procedia CIRP, 93, 1496–1501.
 
9.
RÖTHLIN M., KLIPPEL H., AFRASIABI M., WEGENER K., 2019, Metal Cutting Simulations Using Smoothed Particle Hydrodynamics on the GPU, The International Journal of Advanced Manufacturing Technology, 102/ 9–12, 3445–3457.
 
10.
GINGOLD R.A., MONAGHAN J.J., 1977, Smoothed Particle Hydrodynamics: Theory and Application to Non-Spherical Stars, Monthly Notices of The Royal Astronomical Society, 181/3, 375–389.
 
11.
LI S., LIU W.K., 2004, Meshfree Particle Methods, Springer, Berlin.
 
12.
LIBERSKY L.D., PETSCHEK A.G., 1991, Smooth Particle Hydrodynamics with Strength of Materials, Soccoro New Mexico, 87801.
 
13.
HEINSTEIN M., SEGALMAN D., 1997, Simulation of Orthogonal Cutting with Smooth Particle, Sandia National Laboratories.
 
14.
RÖTHLIN M., 2019, Meshless Software Tool to Simulate Metal Cutting Operations by Employing Contemporary Numerical Methods, Dissertation, ETH Zürich.
 
15.
RÖTHLIN M., KLIPPEL H., WEGENER K., 2018, Meshless Methods for Large Deformation Elastodynamics, arXiv preprint arXiv:1807.01117.
 
16.
AFRASIABI M., RÖTHLIN M., WEGENER K., 2019, Contemporary Meshfree Methods for Three Dimensional Heat Conduction Problems, Archives of Computational Methods in Engineering, 1–35.
 
17.
AFRASIABI M., MEIER L., RÖTHLIN M., KLIPPEL H., WEGENER K., 2020, GPU-Accelerated Meshfree Simulations for Parameter Identification of a Friction Model in Metal Machining, International Journal of Mechanical Sciences, 105571.
 
18.
AFRASIABI M., RÖTHLIN M., KLIPPEL H., WEGENER K., 2019, Meshfree Simulation of Metal Cutting: an Updated Lagrangian Approach with Dynamic Refinement, International Journal of Mechanical Sciences, 160, 451–466.
 
19.
RÖTHLIN M., KLIPPEL H., AFRASIABI M., WEGENER K., 2019, Meshless Single Grain Cutting Simulations on the GPU, International Journal of Mechatronics and Manufacturing Systems, 12/3–4, 272–297.
 
20.
JOHNSON G.R., COOK W.H., 1983, A Constitutive Model and Data for Metals Subjected to Large Strains, High Strain Rates and High Temperatures, Proceedings of the 7th International Symposium on Ballistics, 21/1.
 
21.
KLIPPEL H., 2021, Constitutive Equations for Simulation of Metal Cutting with Meshless Methods on GPU, Dissertation, ETH Zürich.
 
22.
JUMPER J., EVANS R., PRITZEL A., GREEN T., FIGURNOV M., RONNEBERGER O., TUNYASUVUNAKOOL K., BATES R., ŽÍDEK A., POTAPENKO A., BRIDGLAND A., 2021. Highly Accurate Protein Structure Prediction with AlphaFold, Nature, 596, 583–589.
 
23.
CARLEO G., CIRAC I., CRANMER K., DAUDET L., SCHULD M., TISHBY N., VOGT-MARANTO L. ZDEBOROVÁ L., 2019, Machine Learning and the Physical Sciences. Reviews of Modern Physics, 91/4, 045002.
 
24.
CAMBIONI S., 2019, Realistic On-the-fly Outcomes of Planetary Collisions: Machine Learning Applied to Simulations of Giant Impacts, The Astrophysical Journal, 875/1, 40, https://doi.org/10.48550/arXiv....
 
25.
JAKOB J., GROSS M., GÜNTHER T., 2020, A Fluid Flow Data Set for Machine Learning and its Application to Neural Flow Map Interpolation, IEEE Transactions on Visualization and Computer Graphics, 27/2, 1279–1289.
 
26.
LANGER M.F., GOESSMANN A., RUPP M., 2020, Representations of Molecules and Materials for Interpolation of Quantum-Mechanical Simulations via Machine Learning, arXiv preprint arXiv:2003.12081.
 
27.
WOODWARD M., TIAN Y., HYETT C., FRYER C., LIVESCU D., STEPANOV M., CHERTKOV M., 2021, Physics Informed Machine Learning of SPH: Machine Learning Lagrangian Turbulence, arXiv Preprint arXiv:2110.13311.
 
28.
SHI C., WANG Y., 2021, Non-Parametric Machine Learning Methods for Interpolation of Spatially Varying Non-Stationary and Non-Gaussian Geotechnical Properties, Geoscience Frontiers, 121, .339–350.
 
29.
WYEN C.F., 2011, Rounded Cutting Edges and Their Influence In Machining Titanium, Dissertation, ETH Zürich.
 
30.
RÜTTIMANN, 2012, Simulation of Metal Cutting Processes Using Meshfree Methods, Dissertation, ETH Zürich.
 
31.
DUCOBU F., ARRAZOLA P.J., RIVIÈRE-LORPHÈVRE E., FILIPPI E., 2021, On the Selection of an Empirical Material Constitutive Model for the Finite Element Modelling of Ti6Al4V Orthogonal Cutting, Including the Segmented Chip Formation, International Journal of Material Forming, 3.
 
32.
CYBENKO G., 1989, Approximation by Superpositions of a Sigmoidal Function, Math. Control Signal Systems, 2, 303–314.
 
33.
ALBRECHT P., 1960, New Developments in the Theory of the Metal-Cutting Process: Part I. The Ploughing Process in Metal Cutting, Journal of Engineering for Industry, 82/4, 348–357.
 
34.
BABU B., LINDGREN L.E., 2013, Dislocation Density Based Model for Plastic Deformation and Globularization of Ti-6Al-4V, International Journal of Plasticity, 50, 94–108.
 
35.
RODRIGUEZ J.M., LARSSON S., CARBONELL J.M., JONSÉN P., 2020, Dislocation Density Based Flow Stress Model Applied to the PFEM Simulation of Orthogonal Cutting Processes of Ti-6Al-4V, Materials, 13/8, 1979, https://doi.org/10.3390/ ma13081979.
 
36.
PAN Z., LIANG S.Y., GARMESTANI H., SHIH D.S., 2016, Prediction of Machining-Induced Phase Transformation and Grain Growth of Ti-6Al-4 V Alloy, The International Journal of Advanced Manufacturing Technology, 87/1, 859–866.
 
37.
MOUFKI A., MOLINARI A., DUDZINSKI D., 1998, Modelling of Orthogonal Cutting with a Temperature Dependent Friction Law, Journal of the Mechanics and Physics of Solids, 46/10, 2103–2138.
 
 
CITATIONS (8):
1.
Modified Taylor Impact Tests with Profiled Copper Cylinders: Experiment and Optimization of Dislocation Plasticity Model
Egor S. Rodionov, Victor V. Pogorelko, Victor G. Lupanov, Polina N. Mayer, Alexander E. Mayer
Materials
 
2.
Prior Knowledge-Embedded Machine Learning-Driven Cutting Force Monitoring in Machinery Industry
Ziqi Huang, Tiandong Xi, Marcel Fey, Christian Brecher
2022 International Conference on Electrical, Computer and Energy Technologies (ICECET)
 
3.
Cyber–Physical Systems for High-Performance Machining of Difficult to Cut Materials in I5.0 Era—A Review
Hossein Gohari, Mahmoud Hassan, Bin Shi, Ahmad Sadek, Helmi Attia, Rachid M’Saoubi
Sensors
 
4.
iMFREE: A versatile software tool for modelling machining processes with particle methods
Hagen Klippel, Nanyuan Zhang, Michal Kuffa, Mohamadreza Afrasiabi, Markus Bambach, Konrad Wegener
Procedia CIRP
 
5.
Mechanical Quantities Prediction of Metal Cutting by Machine Learning and Simulation Data
Yijin Cheng, Yan Li, Yu Cong, Pierre Joli, Zhiqiang Feng
International Journal of Applied Mechanics
 
6.
Physics based models for characterization of machining performance – A critical review
H. Attia, A. Sadek, Y. Altintas, A. Matsubara, D. Umbrello, K. Wegener, R. Eisseler, F. Ducobu, H. Ghadbeigi
CIRP Journal of Manufacturing Science and Technology
 
7.
Hybrid SPH-FEM solver for metal cutting simulations on the GPU including thermal contact modeling
Nanyuan Zhang, Hagen Klippel, Mohamadreza Afrasiabi, Matthias Röthlin, Michal Kuffa, Markus Bambach, Konrad Wegener
CIRP Journal of Manufacturing Science and Technology
 
8.
An attempt for numerical optimisation of a micro-groove geometry at the rake face when turning Ti6Al4V alloy with indexable inserts
Hagen Klippel, Kneubühler Fabian, Haudenschild Livia, Zhang Nanyuan, Kuffa Michal, Wegener Konrad
Journal of Machine Engineering
 
eISSN:2391-8071
ISSN:1895-7595
Journals System - logo
Scroll to top