A Comparative Study of Tool Wear for Niobium Carbide and Tungsten Carbide-Based Cutting Materials in Dry Cylindrical Turning
 
More details
Hide details
1
, Germany
 
These authors had equal contribution to this work
 
 
Submission date: 2025-04-30
 
 
Final revision date: 2025-05-24
 
 
Acceptance date: 2025-05-26
 
 
Online publication date: 2025-06-05
 
 
Corresponding author
Christoph Schneider   

Institute for Machine Tools and Factory Management (IWF), Technische Universität Berlin, Germany
 
 
 
KEYWORDS
TOPICS
ABSTRACT
Using niobium carbide (NbC) for cutting materials is a promising alternative to tungsten carbide (WC) based cutting materials for metal machining due to the inherent material properties of NbC. These include increased hot hardness and reduced chemical wear compared to WC. This study examines the application behaviour at varying cutting speeds of the cutting material composition NbC-12Ni4Mo4VC produced on a laboratory scale as well as an industrial reference cutting material based on the tungsten carbide WC-6Co. A series of measurements and analyses are conducted during the machining tests in order to evaluate the tool life, the growth of the flank wear, the cutting force and the achieved roughness of the machined surface. For NbC-12Ni4Mo4VC an increase in cutting speed correlates with an increase in tool life. As for higher cutting speeds a superior tool life of NbC-12Ni4Mo4VC is achieved compared to the industrial reference cutting tool material WC-6Co.
REFERENCES (22)
1.
SCHEDLER W., 1988, Hartmetall für den Praktiker, Aufbau, Herstellung, Eigenschaften und industrielle Anwendung einer modernen Werkstoffgruppe, VDI-Verlag, Düsseldorf.
 
2.
BOBZIN K., BRÖGELMANN T., KRUPPE N.C., CARLET M., 2019, Nanocomposite (Ti,Al,Cr,Si)N HPPMS Coatings for High Performance Cutting Tools, Surface and Coatings Technology, 378, 1–9.
 
4.
ZEILER B., BARTL A., SCHUBERT W.D., 2021, Recycling of Tungsten: Current Share, Economic Limitations, Technologies and Future Potential, International Journal of Refractory Metals and Hard Materials, 98, https://doi.org/10.1016/j.ijrm....
 
5.
HUANG S.G., LIU R.L., LI L., VAN DER BIEST O., VLEUGELS J., 2008, Nbc as Grain Growth Inhibitor and Carbide in WC–Co Hardmetals, International Journal of Refractory Metals and Hard Materials, 26/5, 389–395.
 
6.
[MONTENEGRO P., GOMES J., REGO R., BORILLE A., 2018, Potential of Niobium Carbide Application as the Hard Phase in Cutting Tool Substrate, International Journal of Refractory Metals and Hard Materials, 70, 116–123.
 
7.
GENGA R.M., CORNISH L.A., WOYDT M., JANSE VAN VUUREN A., POLESE C., 2018, Microstructure, Mechanical and Machining Properties of LPS And SPS Nbc Cemented Carbides for Face-Milling of Grey Cast Iron, International Journal of Refractory Metals & Hard Materials, 73, 111–120.
 
8.
UHLMANN E., KROPIDLOWSKI K., HINZMANN D., MEIER P., PRASOL L., WOYDT M., 2018 Verschleißuntersuchungen von Niobcarbid Verglichen mit Wolframcarbid auf Eisenbasierten Werkstoffen, wt Werkstattstechnik online 108 H. 1/2 Co. KG, Düsseldorf.
 
9.
UHLMANN E., HINZMANN D., KROPIDLOWSKI K., MEIER P., PRASOL L., WOYDT M., 2018, Substitution of Commercially Coated Tungsten Carbide Tools in Dry Cylindrical Turning Process by Hipims Coated Niobium Carbide Cutting Inserts, Surface & Coatings Technology, 354, 112–118.
 
10.
KROPIDLOWSKI K., HINZMANN D., UHLMANN E., THEILER G., GRADT T., 2019 Wandlungsfähigkeit von Schneidstoffen – Leistungsfähigkeit von Niobcarbidbasierten Hartmetallen, Proceedings of the 9th Congress of the German Academic Association for Production Technology (WGP), 307–316.
 
11.
UHLMANN E.; MEIER P.; HINZMANN D., 2019, Application of Niobium Carbide Based Cutting Materials for Peripheral Milling of CFRP, Procedia CIRP, 85, 108–113.
 
12.
KLOCKE F., 2018, Fertigungsverfahren 1, Springer Vieweg, Berlin.
 
13.
WOYDT M., MOHRBACHER H., VLEUGELS J., HUANG S., 2016, Niobium Carbide for Wear Protection - Tailoring its Properties by Processing and Stoichiometry, Metal Powder Report, 71, 265–272.
 
14.
BOUZAKIS K.D., et al., 2014, Effect of Cutting Edge Preparation of Coated Tools on Their Performance in Milling Various Materials, CIRP Journal of Manufacturing Science and Technology, 7/3, 264–273.
 
15.
CHEN L., EL-WARDANY T.I., NASR M., ELBESTAWI M.A., 2006, Effects of Edge Preparation and Feed when Hard Turning a Hot Work Die Steel with Polycrystalline Cubic Boron Nitride Tools, CIRP Annals, 55/1, 89–92.
 
16.
PENG B., BERGS T., KLOCKE F., DÖBBELER B., 2019, An Advanced FE-Modeling Approach to Improve the Prediction in Machining Difficult-to-Cut Material, The International Journal of Advanced Manufacturing Technology, 103, 2183–2196.
 
17.
DENKENA B., KÖHLER J., VENTURA C.E.H., 2013, Customized Cutting Edge Preparation by Means of Grinding, Precision Engineering, 37/3, 590–598.
 
19.
ISO 3685:1993. Tool-Life Testing with Single-Point Turning Tools, Geneva: International Organization for Standardization, 1993.
 
20.
GRZESIK W., 2017, Advanced Machining Processes of Metallic Materials, Elsevier.
 
21.
WOYDT M., MOHRBACHER H., 2015, The Use of Niobium Carbide (Nbc) as Cutting Tools and for Wear Resistant Tribosystems, Int. Journal of Refractory Metals and Hard Materials, 49, 212–218.
 
22.
ÖZEL T., HSU T.K., ZEREN E., 2005, Effects of Cutting Edge Geometry, Workpiece Hardness, Feed Rate and Cutting Speed on Surface Roughness and Forces in Finish Turning of Hardened AISI H13 Steel, The International Journal of Advanced Manufacturing Technology, 25, 262–269.
 
eISSN:2391-8071
ISSN:1895-7595
Journals System - logo
Scroll to top