Review of new developments in machining of aerospace materials
 
More details
Hide details
1
Faculty of Production Engineering, Warsaw University of Technology, Poland
 
 
Submission date: 2020-11-10
 
 
Final revision date: 2021-01-28
 
 
Acceptance date: 2021-01-28
 
 
Online publication date: 2021-03-29
 
 
Publication date: 2021-03-29
 
 
Corresponding author
Krzysztof Jemielniak   

Faculty of Production Engineering, Warsaw University of Technology, Narbutta 86,, 02-524, Warszawa, Poland
 
 
Journal of Machine Engineering 2021;21(1):22-55
 
KEYWORDS
TOPICS
ABSTRACT
The paper presents an update of the recent literature on advances in machining of difficult to machine materials such as nickel and titanium-based alloys, and composites used in aeroengine and aerostructure applications. The review covers the following issues: advances in high-performance cooling techniques as cryogenic machining, minimum quantity lubrication, the combination of MQL and cryogenic cooling, and high-pressure lubricoolant supply and hybrid cutting processes – vibration assisted machining (both low and high frequency), laser, plasma and EDM assisted machining. Examples of applications in industrial processes are also given.
 
REFERENCES (75)
1.
LAUWERS B., KLOCKE F., KLINK A., TEKKAYA A.E., NEUGEBAUER R., MCINTOSH D., 2014, Hybrid Processes in Manufacturing, CIRP Annals – Manufacturing Technology, 63, 561–583.
 
2.
M’SAOUBI R., AXINTE R., SOO S.L, NOBEL C., ATTIA H., KAPPMEYER G., ENGIN S., SIM W.M., 2015, High Performance Cutting of Advanced Aerospace Alloys and Composite Materials, CIRP Annals – Manufacturing Technology, 64, 557–580.
 
3.
CHEN W., HUO D., SHI Y., HALE J.M., 2018, State-of-the-Art Review on Vibration-Assisted Milling: Principle, System Design, and Application, Int. J. Adv. Manuf. Technol., 97, 2033–2049.
 
4.
DESHPANDE Y.V., ANDHARE A.B., PADOLE P.M., 2018, How Cryogenic Techniques Help in Machining of Nickel Alloys? A review, Machining Science and Technology, 22/4, 543–584.
 
5.
LI J., RASHID L., LAGHARI A., 2019, A Review on Machining and Optimization of Particle-Reinforced Metal Matrix Composites, Int. J. Adv. Manuf. Technol., 100, 2929–2943.
 
6.
OSMAN K.A., ÜNVER H.Ö., ŞEKER U., 2019, Application of Minimum Quantity Lubrication Techniques in Machining Process of Titanium Alloy for Sustainability: a review, Int. J. Adv. Manuf. Technol., 100, 2311–2332.
 
7.
PERVAIZ S., ANWAR S., QURESHI I., AHMED N., 2019, Recent Advances in the Machining of Titanium Alloys using Minimum Quantity Lubrication (MQL) Based Techniques, International Journal of Precision Engineering and Manufacturing-Green Technology, 6, 133–145.
 
8.
SAID Z., GUPTA M., HEGAB H., ARORA N., KHAN A.M., JAMIL M., BELLOS E., 2019, A Comprehensive Review on Minimum Quantity Lubrication (MQL) in Machining Processes Using Nano-Cutting Fluids, Int. J. Adv. Manuf., Technol., 105, 2057–2086.
 
9.
FAN W., JI W., WANG L., ZHENG L., WANG Y., 2020, A Review on Cutting Tool Technology in Machining of Ni-Based Superalloys, Int. J. Adv. Manuf. Technol., 110, 2863–2879.
 
10.
ROSS K.N.S, MANIMARAN G., 2019, Effect of Cryogenic Coolant on Machinability of Difficult-to-Machine Ni–Cr Alloy Using PVD-TiAlN Coated WC Tool, Journal of the Brazilian Society of Mechanical Sciences and Engineering, 41, 44.
 
11.
PUŠAVEC F., GRGURAŠ D., KOCH M., KRAJNIK P., 2019, Cooling Capability of Liquid Nitrogen and Carbon Dioxide in Cryogenic Milling, CIRP Annals – Manufacturing Technology, 68, 73–76.
 
12.
JAMIL M., KHAN A.M., GUPTA M.K., MIA M., HE N., LI, L., SIVALINGAM V., 2020, Influence of CO2-Snow and Subzero MQL on Thermal Aspects in the Machining of Ti-6Al-4V, Applied Thermal Engineering, 177, 115480.
 
13.
DAMIR A., SADEK A., ATTIA H., 2018, Characterization of Machinability and Environmental Impact of Cryogenic Turning of Ti-6Al-4V, Procedia CIRP, 69, 893–898.
 
14.
JAWAHIR I.S., ATTIA H., BIERMANN D., DUFLOU J., KLOCKE F., MEYER D., NEWMAN S.T., PUSAVEC F., PUTZ M., RECH J., SCHULZE V., UMBRELLO D., 2016, Cryogenic Manufacturing Processes, CIRP Annals – Manufacturing Technology, 65, 713–736.
 
15.
SHAH P., KHANNA N., CHETAN A., 2020, Comprehensive Machining Analysis to Establish Cryogenic LN2 and LCO2 As Sustainable Cooling and Lubrication Techniques, Tribology International, 148, 106314.
 
16.
CHETAN A., KHANNA N., PRUNCU C.I, Singla A.K, Gupta M.K, 2020, Tool Wear Progression and Its Effects on Energy Consumption and Surface Roughness in Cryogenic Assisted Turning of Ti-6Al-4V, Int. J. Adv. Manuf., Technol., 111, 1319–1331.
 
17.
CHAABANI S., ARRAZOLA P.J., AYED Y., MADARIAGA A., TIDU A., GERMAIN G., 2020, Comparison Between Cryogenic Coolants Effect on Tool Wear and Surface Integrity in Finishing Turning of Inconel 718, Journal of Materials Processing Tech., 285, 116780.
 
18.
SARTORI S., PEZZATO L., DABALÀ M., ENRICI T.M., MERTENS A., GHIOTTI A., BRUSCHI S., 2018, Surface Integrity Analysis of Ti6Al4V After Semi-finishing Turning Under Different Low-Temperature Cooling Strategies, Journal of Materials Engineering and Performance, 27, 4810–4818.
 
19.
SARTORI S., TACCIN M., PAVESE G., GHIOTTI A., BRUSCHI S., 2018, Wear Mechanisms of Uncoated and Coated Carbide Tools When Machining Ti6Al4V Using LN2 and Cooled N2, Int. J. Adv. Manuf. Technol., 95, 1255–1264.
 
20.
KIRSCH B., BASTEN S., HASSE H., AURICH J.C, 2018, Sub-Zero Cooling: A Novel Strategy for High Performance Cutting, CIRP Annals – Manufacturing Technology, 67, 95–98.
 
21.
STAMPFER B., GOLDA P., SCHIEßL R., MAAS U., SCHULZE V., 2020, Cryogenic Orthogonal Turning of Ti-6Al-4V, Int. J. Adv. Manuf. Technol., 111, 359–369.
 
22.
KUMAR D., GURURAJA S., 2020, Machining Damage and Surface Integrity Evaluation During Milling of UD-CFRP Laminates: Dry vs. cryogenic, Composite Structures, 247, 112504.
 
23.
KANNAN S., PERVAIZ S., 2020, Surface Morphology of Inclined CFRP Holes When Machined Under Cryogenic Environment, Materials and Manufacturing Processes, 35/11, 1228–1239.
 
24.
OKAFOR A.C., NWOGUH T.O., 2020, Comparative Evaluation of Soybean Oil–Based MQL Flow Rates and Emulsion Flood Cooling Strategy in High-Speed Face Milling of Inconel 718, Int. J. Adv. Manuf. Technol., 107, 3779–3793.
 
25.
DONG L., LI C., BAI X., ZHAI M., QI Q., YIN Q., LV X., LI L., 2019, Analysis of the Cooling Performance of Ti–6Al–4V in Minimum Quantity Lubricant Milling with Different Nanoparticles, Int. J. Adv. Manuf. Technol., 103, 2197–2206.
 
26.
HEGAB H., UMER U., SOLIMAN M., KISHAWY H.A., 2018, Effects of Nano-Cutting Fluids on Tool Performance and Chip Morphology During Machining Inconel 718, Int. J. Adv. Manuf., Technol., 96, 3449–3458.
 
27.
MARQUES A., SUAREZ M.P., SALES W.F., MACHADO Á.R., 2019, Turning of Inconel 718 with Whisker-Reinforced Ceramic Tools Applying Vegetable-Based Cutting Fluid Mixed with Solid Lubricants by MQL, Journal of Materials Processing Tech., 266, 530–543.
 
28.
SIVALINGAM V., ZAN Z., SUN J., SELVAM B., GUPTA M.K., JAMIL M., MIA M., 2020, Wear Behavior of Whisker-Reinforced Ceramic Tools in the Turning of Inconel 718 assisted by an atomized spray of solid lubricants, Tribology International, 148, 106235.
 
29.
SARTORI S., GHIOTTI A., BRUSCHI S., 2018, Solid Lubricant-Assisted Minimum Quantity Lubrication and Cooling Strategies to Improve Ti6Al4V Machinability in Finishing Turning, Tribology International, 118, 287–294.
 
30.
LI M., YU T., ZHANG R., LI H., WANG W., 2018, MQL Milling of TC4 Alloy by Dispersing Graphene into Vegetable Oil-Based Cutting Fluid, Int. J. Adv. Manuf. Technol., 99, 1735–1753.
 
31.
GONG L., BERTOLINI R., GHIOTTI A., HE N., BRUSCH S., 2020, Sustainable Turning of Inconel 718 Nickel Alloy Using MQL Strategy Based on Graphene Nanofluids, Int. J. Adv. Manuf. Technol., 108, 3159–3174.
 
32.
BERTOLINI R., GONG L., GHIOTTI A., BRUSCHI S., 2020, Graphene Nanoplatelets-Assisted Minimum Quantity Lubrication in Turning To Enhance Inconel 718 Surface Integrity, Procedia CIRP, 87, 71–76.
 
33.
YI S., MO J., DING S., 2019, Experimental Investigation on the Performance and Mechanism of Graphene Oxide Nanofluids in Turning Ti-6Al-4V, Journal of Manufacturing Processes, 43, 164–174.
 
34.
LI G., YI S., LI N., PAN W., WEN C., DING S., 2019, Quantitative Analysis of Cooling and Lubricating Effects of Graphene Oxide Nanofluids in Machining Titanium Alloy Ti6Al4V, Journal of Materials Processing Tech., 271, 584–598.
 
35.
SHOKRANI A., BETTS J., 2020, A New Hybrid Minimum Quantity Lubrication System for Machining Difficult-to-Cut Materials, CIRP Annals – Manufacturing Technology, 69, 73–76.
 
36.
BARTOLOMEIS A.D., SHOKRANI A., 2020, Electrohydrodynamic Atomization for Minimum Quantity Lubrication (EHDA-MQL) in End Milling Ti6Al4V Titanium Alloy, J. Manuf. Mater. Process., 4, 70.
 
37.
SHOKRANI A., AL-SAMARRAI I., NEWMAN S.T., 2019, Hybrid Cryogenic MQL for Improving Tool Life in Machining of Ti-6Al-4V Titanium Alloy, Journal of Manufacturing Processes, 43, 229–243.
 
38.
PEREIRA O., CELAYA A., URBIKAÍN G., RODRÍGUEZ A., FERNÁNDEZ-VALDIVIELSO A., LACALLE L.N.L, 2020, CO2 Cryogenic Milling of Inconel 718: Cutting Forces and Tool Wear, Journal of Materials Research and Technology, 9, 8459–8468.
 
39.
YILDIRIM C.V, KIVAK T., SARIKAYA M., SIRIN S., 2020, Evaluation of Tool Wear, Surface Roughness/Topography and Chip Morphology When Machining of Ni-Based Alloy 625 Under MQL, Cryogenic Cooling and CryoMQL, Journal of Materials Research and Technology, 9/2, 2079–2092.
 
40.
DAMIR A., SHI B., ATTIA M.H, 2019, Flow Characteristics of Optimized Hybrid Cryogenic-Minimum Quantity Lubrication Cooling in Machining of Aerospace Materials, CIRP Annals – Manufacturing Technology, 68, 77–80.
 
41.
BAGHERZADEH A., BUDAK E, 2018, Investigation of Machinability in Turning of Difficult-to-Cut Materials Using a New Cryogenic Cooling Approach, Tribology International, 119, 510–520.
 
42.
SUHAIMI M.A., YANG G.-D., PARK K.H., SHARIF S., KIM D.W., 2018, Effect of Cryogenic Machining for Titanium Alloy Based on Indirect, Internal and External Spray System, Procedia Manufacturing, 17, 158–165.
 
43.
SCHOOP J., SALES W.F., JAWAHIR I.S., 2017, High Speed Cryogenic Finish Machining of Ti-6Al4V with Polycrystalline Diamond Tools, Journal of Materials Processing Tech., 250, 1–8.
 
44.
CICA D., KRAMAR D., 2019, Multi-Objective Optimization of High-Pressure Jet-Assisted Turning of Inconel 718, Int. J. Adv. Manuf. Technol., 105, 4731–4745.
 
45.
KAYNAKA Y., GHARIBI A., YILMAZ U., KÖKLÜ U, ASLANTAŞ K., 2018, A Comparison of Flood Cooling, Minimum Quantity Lubrication and High Pressure Coolant on Machining and Surface Integrity of Titanium Ti-5553 alloy, Journal of Manufacturing Processes, 34, 503–512.
 
46.
TASCIOGLU E., GHARIBI A., KAYNAK Y., 2019, High Speed Machining of Near-Beta Titanium Ti-5553 Alloy Under Various Cooling and Lubrication Conditions, Int. J. Adv. Manuf. Technol., 102, 4257–4271.
 
47.
SØRBY K., VAGNORIUS Z., 2018, High-Pressure Cooling in Turning of Inconel 625 with Ceramic Cutting Tools, Procedia CIRP, 77, 74–77.
 
48.
SUÁREZ A., VEIGA F., DE LACALLE L.N.L., POLVOROSA R., WRETLAND A., 2019, An Investigation of Cutting Forces and Tool Wear in Turning of Haynes 282, Journal of Manufacturing Processes, 37, 529–540.
 
49.
ZHENG L., CHEN W., HUO D., 2020, Review of vibration devices for vibration-assisted machining, Int. J. Adv. Manuf. Technol., 108, 1631–1651.
 
50.
RINCK P.M., GUERAY A., KLEINWORT R., ZAEH M.F, 2020, Experimental Investigations on Longitudinal-Torsional Vibration-Assisted Milling of Ti-6Al-4V, Int. J. Adv. Manuf., Technol., 108, 3607–3618.
 
51.
LIU Q., XU J., YU H., 2020, Experimental Study of Tool Wear and Its Effects on Cutting Process of Ultrasonic-Assisted Milling of Ti6Al4V, Int. J. Adv. Manuf., Technol., 108, 2917–2928.
 
52.
ZHU L., NI C., YANG Z., LIU C., 2019, Investigations of Microtextured Surface Generation Mechanism and Tribological Properties in Ultrasonic Vibration-Assisted Milling of Ti-6Al-4V, Precision Engineering, 57, 229–243.
 
53.
GAO J., JIN X., 2019, Effects of Ultrasonic Vibration Assistance on Chip Formation Mechanism in Cutting of Ti–6Al–4V, J. Manuf. Sci. Eng., 141/12, 121007.
 
54.
HUSSEIN R., SADEK A., ELBESTAWI M. A., ATTIA M.H., 2019, Surface and Microstructure Characterization of Low-Frequency Vibration-Assisted Drilling of Ti6Al4V, Int. J. Adv. Manuf., Technol., 103, 1443–1457.
 
55.
HUSSEIN R., SADEK A., ELBESTAWI M.A., ATTIA M.H., 2020, Effect of Process Parameters on Chip formation during vibration-assisted drilling of Ti6Al4V, Int. J. Adv. Manuf., Technol., 106, 1105–1119.
 
56.
SINGH M., DHIMAN S., SINGH H., BERNDT C.C., 2020, Optimization of Modulation-Assisted Drilling of Ti-6Al-4V Aerospace Alloy Via Response Surface Method, Materials and Manufacturing Processes, 35/12, 1313–1329.
 
57.
BAI W., BISHT A., ROY A., SUWAS S., SUN R., SILBERSCHMIDT V.V, 2019, Improvements of Machinability of Aerospace-Grade Inconel Alloys with Ultrasonically Assisted Hybrid Machining, Int. J. Adv. Manuf., Technol., 101, 1143–1156.
 
58.
YAN L., ZHANG Q., YU J., 2018, Effects of Continuous Minimum Quantity Lubrication with Ultrasonic Vibration in Turning of Titanium Alloy, Int. J. Adv. Manuf., Technol., 98, 827–837.
 
59.
NI C., ZHU L., YANG Z., 2019, Comparative Investigation of Tool Wear Mechanism and Corresponding Machined Surface Characterization in Feed-Direction Ultrasonic Vibration Assisted Milling of Ti–6Al–4V from Dynamic View, Wear, 436–437, 203006.
 
60.
NI C., ZHU L., 2020, Investigation on Machining Characteristics of TC4 Alloy by Simultaneous Application of Ultrasonic Vibration Assisted Milling (UVAM) and Economical-Environmental MQL Technology, Journal of Materials Processing Tech., 278, 116518.
 
61.
LU Z., ZHANG D., ZHANG X., PENG Z., 2020, Effects of High-Pressure Coolant on Cutting Performance of High-Speed Ultrasonic Vibration Cutting Titanium Alloy, Journal of Materials Processing Tech., 279, 116584.
 
62.
LIU Y., LIU Z., WANG X., HUANG T., 2020, Experimental Study on Tool Wear in Ultrasonic Vibration-Assisted Milling of C/SiC Composites, Int. J. Adv. Manuf. Technol., 107, 425–436.
 
63.
CHEN J., MING W., AN Q., CHEN M., 2020, Mechanism and Feasibility of Ultrasonic-Assisted Milling to Improve the Machined Surface Quality of 2D Cf/SiC Composites, Ceramics International, 46, 15122–15136.
 
64.
KIM J., BAI W., ROY A., JONES L.C.R, AYVAR-SOBERANIS S., SILBERSCHMIDT V.V., 2019, Hybrid Machining of Metal-Matrix Composite, Procedia CIRP, 82, 184–189.
 
65.
NIU Q., JING L, WANG C., LI S., QIU X., LI C., XIANG D., 2020, Study on Effect of Vibration Amplitude on Cutting Performance of SiCp/Al Composites During Ultrasonic Vibration-Assisted Milling, Int. J. Adv. Manuf., Technol., 106, 2219–2225.
 
66.
HUSSEIN R., SADEK A., ELBESTAWI M. A., ATTIA M.H., 2018, Low-Frequency Vibration-Assisted Drilling of Hybrid CFRP/Ti6Al4V Stacked Material, Int. J. Adv. Manuf. Technol., 98, 2801–2817.
 
67.
XU J., LI C., CHEN M., REN F., 2019, A Comparison Between Vibration Assisted and Conventional Drilling of CFRP/Ti6Al4V Stacks, Materials and Manufacturing Processes., 34/10, 1182–1193.
 
68.
HUSSEIN R., SADEK A., ELBESTAWI M.A., ATTIA M.H., 2019, An Investigation into Tool Wear and Hole Quality During Low-Frequency Vibration-Assisted Drilling of CFRP/Ti6Al4V stack, J. Manuf., Mater. Process., 3/3, 63.
 
69.
YANG H., CHEN Y., XU J., LADONNE M., LONFIER J., FU Y., 2019, Tool Wear Mechanism in Low-Frequency Vibration-Assisted Drilling of CFRP/Ti Stacks and Its Individual Layer, Int. J. Adv Manuf. Technol., 104, 2539–2551.
 
70.
HUSSEIN R., SADEK A., ELBESTAWI M.A., ATTIA M.H., 2019, Elimination of Delamination and Burr Formation Using High-Frequency Vibration-Assisted Drilling of Hybrid CFRP/Ti6Al4V Stacked Material, Int. J. Adv. Manuf., Technol., 105, 859–873.
 
71.
WEI L., WANG D., 2019, Comparative Study on Drilling Effect Between Conventional Drilling and Ultrasonic-Assisted Drilling of Ti-6Al-4V/Al2024-T351 Laminated Material, Int. J. Adv. Manuf. Technol., 103, 141–152.
 
72.
XU D., LIAO Z., AXINTE D., SARASUA J.A., WRETLAND A., 2020, Investigation of Surface Integrity in Laser-Assisted Machining of Nickel Based Superalloy, Materials and Design, 194, 108851.
 
73.
WU X., CHEN J., 2018, The Temperature Process Analysis and Control on Laser-Assisted Milling of Nickel-Based Superalloy, Int. J. Adv. Manuf. Technol., 98, 223–235.
 
74.
MOON S-H., LEE C-M., 2018, A Study on the Machining Characteristics Using Plasma Assisted Machining of AISI 1045 Steel and Inconel 718, International Journal of Mechanical Sciences, 142/143, 595–602.
 
75.
LI C., XU M., YU Z., HUANG L., LI S., LI P., NIU Q., KO T.J., 2020, Electrical Discharge-Assisted Milling for Machining Titanium Alloy, Journal of Materials Processing Tech., 285, 116785.
 
eISSN:2391-8071
ISSN:1895-7595
Journals System - logo
Scroll to top