A Study of Low-Frequency Vibration-Assisted Bandsawing of Metallic Parts
 
More details
Hide details
1
Institut of Machine Tools, University of Stuttgart, Germany
 
 
Submission date: 2023-03-30
 
 
Final revision date: 2023-05-23
 
 
Acceptance date: 2023-05-26
 
 
Online publication date: 2023-06-05
 
 
Publication date: 2023-06-12
 
 
Corresponding author
Tobias Tandler   

Institut of Machine Tools, University of Stuttgart, Holzgartenstraße 17, 70174, Stuttgart, Germany
 
 
Journal of Machine Engineering 2023;23(2):110-122
 
KEYWORDS
TOPICS
ABSTRACT
Sawing is often the first work step in the metal cutting production chain. Especially for larger workpieces, bandsawing is used for this purpose. Nevertheless, studies on sawing have led a niche existence in the research landscape for a long time. However, as a result of the optimization of manufacturing processes in terms of economic efficiency, bandsawing is increasingly becoming the focus of research, since there are still saving potentials here. The aim of this paper is to investigate the extent to which the bandsawing process can be influenced by active, low-frequency vibration superimposition in the feed direction. First, analogue tests were carried out and parameter combinations were determined which have a positive influence on the process. Subsequently, these parameter combinations were investigated on a real sawing machine with an excitation unit, analysing the extent to which the results from the analogue tests could be transferred to the real process.
REFERENCES (21)
1.
ALBRECHT D., MÖHRING H.-C., 2018. Potentials for the Optimization of Sawing Processes Using the Example of Bandsawing Machines, Procedia Manufacturing, 21/3, 567–574.
 
2.
HEISEL U., (Ed.), 2014, Handbuch Spanen, Hanser, München.
 
3.
GENDRAUD P., ROUX J.-C., BERGHEAU J.-M., 2003, Vibrations and Stresses in Band Saws. Journal of Materials Processing Technology, 135/1, 109–116.
 
4.
THALER T., POTOCNIK P., BRIC I., GOVEKAR E., 2014. Chatter Detection in Band Sawing Based on Discriminant Analysis of Sound Features, Applied Acoustics, 77, 114–121.
 
5.
THALER T., POTOCNIK P., MUZIC P., BRIC I., BRIC R., GOVEKAR E., 2012, Chatter Recognition in Band Sawing Based on Feature Extraction and Discriminant Analysis, Fakhfakh T., Bartelmus W., Chaari F., Zimroz R., Haddar M., (Eds.), Condition Monitoring of Machinery in Non-Stationary Operations, Springer Berlin Heidelberg, Berlin, Heidelberg, 607–615.
 
6.
LE-NGOC L., McCallion H., 1998, Self-Induced Vibration of Bandsaw Blades During Cutting, Proceedings of the Institution of Mechanical Engineers, Part C, Journal of Mechanical Engineering Science, 213, 371–380.
 
7.
OKAI R., 2009. Influence of Vibration Coupling Between Bandsaw Frame and Feed-Carriage System on Sawdust Spillage and Surface Quality of Workpiece During Sawing, Holz Als Roh- Und Werkstoff, 67/2, 189–195.
 
8.
BREHL D.E., DOW T.A., 2008, Review of Vibration-Assisted Machining, Precision Engineering, 32/3, 153–172.
 
9.
GRZESIK W., RUSZAJ A., 2021, Hybrid Manufacturing Processes: Physical Fundamentals, Modelling and Rational Applications, 1st ed. Springer International Publishing, https//doi.org/10.1007/978-3-030-77107-2.
 
10.
KUMAR M.N., SUBBU S.K., KRISHNA P.V., VENUGOPAL A., 2014, Vibration Assisted Conventional and Advanced Machining: A Review, Procedia Engineering, 97, 1577–1586.
 
11.
LAUWERS B., KLOCKE F., KLINK A., TEKKAYA A.E., NEUGEBAUER R., MCINTOSH D., 2014, Hybrid Processes In Manufacturing, CIRP Annals, 63/2, 561–583.
 
12.
LUO X., 2018, Hybrid Machining: Theory, Methods, and Case Studies, Elsevier Science & Technology, San Diego.
 
13.
HUSSEIN R., SADEK A., ELBESTAWI M.A., ATTIA M.H., 2018, Low-Frequency Vibration-Assisted Drilling of Hybrid CFRP/Ti6Al4V Stacked Material, Int. J. Adv. Manuf. Technol., 98/(9-12), 2801–2817.
 
14.
LITTMANN W., STORCK H., WALLASCHECK J., 2002. Reibung bei Ultraschallschwingungen, VDI-Berichte 1736, Paderborn.
 
15.
HANNIG S., 2014, Auslegung von komplexen Werkzeugen zur spanenden Bearbeitung mit Ultraschall, Aachen, Techn. Hochsch., Diss., 1, Aufl. ed. Apprimus Verlag, Aachen.
 
16.
EISSELER R., 2019, Schwingungsunterstütztes Einlippentiefbohren zur Verbesserung der Zerspanbarkeit, Dissertation, Stuttgart, Institute for Machine Tools.
 
17.
NEUGEBAUER R., STOLL A., 2004, Ultrasonic Application in Drilling, Journal of Materials Processing Technology, 149/(1-3), 633–639.
 
18.
CHEN F., WANG D., WU S., 2021, Influence of Ultrasonic Vibration-Assisted Cutting on Ploughing Effect in Cutting Ti6al4v, Archiv. Civ. Mech. Eng., 21/2.
 
19.
SARWAR M., HAIDER J., PERSSON M., HELLBERGH H., CHINESTA F., CHASTEL Y., EL MANSORI M., 2011, Material Behavior at the Extreme Cutting Edge in Bandsawing, International Conference on Advances in Materials and Processing Technologies (AMPT2010), Paris, (France). 24–27 October 2010, AIP, 1059–1061.
 
20.
MÖHRING H.-C., EISSELER R., WEILAND S., 2019, Mit Einzahntests schneller zu neuen Sägewerkzeugen, mav, https://mav.industrie.de/ferti..., Accessed 17 October 2022.
 
21.
TANDLER T., EISSELER R., MÖHRING H.-C., 2022. Adaptronische Regelungskonzepte für Bandsägemaschinen, Tagungsband 4SMARTS 2022. Smarte Strukturen und Systeme – Tagungsband des 4SMARTS-Symposiums 09.-10. März 2022, Braunschweig, 62–70.
 
eISSN:2391-8071
ISSN:1895-7595
Journals System - logo
Scroll to top