An Attempt for Numerical Optimisation of a Micro-Groove Geometry at The Rake Face When Turning Ti6Al4V Alloy with Indexable Inserts
 
More details
Hide details
1
IWF, ETH Zürich, Switzerland
 
These authors had equal contribution to this work
 
 
Submission date: 2024-06-19
 
 
Final revision date: 2024-09-13
 
 
Acceptance date: 2024-09-13
 
 
Online publication date: 2024-10-04
 
 
Corresponding author
Hagen Klippel   

IWF, ETH Zürich, Switzerland
 
 
 
KEYWORDS
TOPICS
ABSTRACT
Machining of Ti6Al4V is considered difficult because the material removal rates are relatively small if the tool wear shall be low. In recent years the reduction of process forces as well as tool wear have been investigated by introducing textures (pockets) into the tool surface. To advance the understanding how those textured tools function and to reduce the experimental effort, a smoothed particle hydrodynamics (SPH) model of the orthogonal cutting process with a parametrised tool containing a single pocket on the rake face with variable position and depth is presented. This simulation model is used to enhance the understanding of rake face textures in order to design optimum cutting tools for given process parameters. Using an optimisation algorithm, an optimum texture geometry is determined numerically and is then experimentally validated, followed by a discussion, why process force reductions are lower than predicted.
 
REFERENCES (33)
1.
PETERS M., Ed., 2010, Titan und Titanlegierungen, [3., Völlig neu bearb. Aufl.], 3. Nachdr. Weinheim: Wiley-VCH.
 
2.
Özel T., BIERMANN D., ENOMOTO T., MATIVENGA P., 2021, Structured and Textured Cutting Tool Surfaces for Machining Applications, CIRP Annals, 70/2, 495–518, https://doi.org/10.1016/j.cirp....
 
3.
MACHADO A.R., et al., 2021, State of the Art of Tool Texturing in Machining , Journal of Materials Processing Technology, 293, 117096, http://doi.org/10.1016/j.jmatp....
 
4.
SIJU A.S., GAJRANI K.K., Joshi S.S., 2021, Dual Textured Carbide Tools for Dry Machining of Titanium Alloys, International Journal of Refractory Metals and Hard Materials, 94, 105403, https://doi.org/10.1016/j.ijrm.... 2020.105403.
 
5.
BIBEYE JAHAZIEL R., KRISHNARAJ V., SUDHAGAR S., GEETHA PRIYADARSHINI B., 2023, Improving Dry Machining Performance of Surface Modified Cutting Tools Through Combined Effect of Texture and Tin-WS2 Coating, Journal of Manufacturing Processes, 85, 101–108, https//doi.org/10.1016/j.jmapro.2022.11.033.
 
6.
ZHENG K., YANG F., PAN M., ZHAO G., BIAN D., 2021, Effect of Surface Line/Regular Hexagonal Texture on Tribological Performance of Cemented Carbide Tool for Machining Ti-6Al-4V Alloys, Int. J. Adv. Manuf. Technol., 116/(9–10), 3149–3162, https//doi.org/10.1007/s00170-021-07636-9.
 
7.
ZHANG N., YANG F., LIU G., 2020, Cutting Performance of Micro-Textured WC/Co Tools in the Dry Cutting of Ti-6Al-4V Alloy, Int. J. Adv. Manuf. Technol., 107/9–10, 3967–3979, https//doi.org/10.1007/s00170-020-05161-9.
 
8.
CAO T., LI Z., ZHANG S., ZHANG W., 2023, Cutting Performance and Lubrication Mechanism of Microtexture Tool with Continuous Lubrication on Tool-Chip Interface, Int. J. Adv. Manuf. Technol., 125/3–4, 1815–1826, https//doi.org/10.1007/s00170-023-10821-7.
 
9.
CHEN J., LIU D., JIN T., QI Y., 2023, A Novel Bionic Micro-Textured Tool with the Function of Directional Cutting-Fluid Transport for Cutting Titanium Alloy, Journal of Materials Processing Technology, 311, 117816, https//doi.org/10.1016/j.jmatprotec.2022.117816.
 
10.
SHARMA R., PRADHAN S., BATHE R.N., 2023, Comparison, Validation, and Prediction of Machinability Aspects of Textured and Non-Textured Cutting Inserts, J. Braz. Soc. Mech. Sci. Eng., 45/2, 76, https//doi.org/10.1007/s40430-022-03953-6.
 
11.
GRZESIK W., 2017, Advanced Machining Processes of Metallic Materials: Theory, Modelling and Applications, Second Edition, Amsterdam, Boston: Elsevier.
 
12.
KNEUBÜHLER F., et al., 2024, Enhancing Orthogonal Finishing Machining of Ti6Al4V with Laser Modified Tools, Int. J. Adv. Manuf. Technol.
 
13.
WYEN C.F., KNAPP W., WEGENER K., 2012, A New Method for the Characterisation of Rounded Cutting Edges, Int. J. Adv. Manuf. Technol, 59/9–12, 899–914, https//doi.org/10.1007/s00170-011-3555-4.
 
14.
KLIPPEL H., SÜSSMAIER S., KUFFA M., WEGENER K., 2022, Dry Cutting Experiments Database Ti6Al4V and Ck45, https//doi.org/10.48550/ARXIV.2209.04197.
 
15.
KLIPPEL H., PFLAUM S., KUFFA M., WEGENER K., 2022, Automated Evaluation of Continuous and Segmented Chip Geometries Based on Image Processing Methods and a Convolutional Neural Network, Journal of Machine Engineering, https//doi.org/10.36897/jme/156091.
 
16.
GINGOLD R.A., MONAGHAN J.J., 1977, Smoothed Particle Hydrodynamics: Theory and Application to Non-Spherical Stars, Monthly Notices of the Royal Astronomical Society, 181/3, 375–389, https//doi.org/10.1093/mnras/ 181.3.375.
 
17.
LI S., LIU W.K., 2007, Meshfree Particle Methods, Springer Science & Business Media.
 
18.
LIBERSKY L.D., PETSCHEK A.G., 1991, Smooth Particle Hydrodynamics with Strength of Materials, Lecture Notes in Physics, 395, 248–257, Berlin, Heidelberg: Springer Berlin Heidelberg, https//doi.org/10.1007/3-540-54960-9_58.
 
19.
HEINSTEIN M., SEGALMAN D., 1997, Simulation of Orthogonal Cutting with Smooth Particle Hydrodynamics, SAND–97-1961, 563721, https//doi.org/10.2172/563721.
 
20.
RÖTHLIN M., 2019, Meshless Software Tool to Simulate Metal Cutting Operations by Employing Contemporary Numerical Methods, ETH Zurich, https//doi.org/10.3929/ETHZ-B-000339533.
 
21.
RÖTHLIN M., KLIPPEL H., WEGENER K., 2018, Meshless Methods for Large Deformation Elastodynamics, https//doi.org/10.48550/ARXIV.1807.01117.
 
22.
KLIPPEL H., ZHANG N., KUFFA M., AFRASIABI M., BAMBACH M., WEGENER K., 2023, Imfree: A Versatile Software Tool for Modelling Machining Processes with Particle Methods, Procedia CIRP, 117, 13–19, https//doi.org/ 10.1016/j.procir.2023.03.004.
 
23.
ZHANG N., et al., 2023, Hybrid SPH-FEM Solver for Metal Cutting Simulations on the GPU Including Thermal Contact Modeling, CIRP Journal of Manufacturing Science and Technology, 41, 311–327, https//doi.org/10.1016/ j.cirpj.2022.12.012.
 
24.
ZHANG N., et al., 2023, Study on the Effect of Wear Models in Tool Wear Simulation Using Hybrid SPH-FEM Method, Procedia CIRP, 117, 414–419, https//doi.org/10.1016/j.procir.2023.03.070.
 
25.
ZHANG N., KLIPPEL H., KNEUBÜHLER F., AFRASIABI M., KUFFA M., WEGENER K., 2024, Investigation of Friction Modeling on Numerical Ti6Al4V Cutting Simulations, International Journal of Mechanical Sciences, 274, 109231, https//doi.org/10.1016/j.ijmecsci.2024.109231.
 
26.
JOHNSON, GORDON R., 1983, A Constitutive Model and Data for Materials Subjected to Large Strains, High Strain Rates, and High Temperatures, Proc. 7th Inf. Sympo. Ballistics, 541–547.
 
27.
KLIPPEL H., 2021, Constitutive Equations for Simulation of Metal Cutting with Meshless Methods on GPU’, ETH Zurich, https//doi.org/10.3929/ETHZ-B-000527668.
 
28.
KLIPPEL H., et al., 2022, Cutting Force Prediction of Ti6Al4V Using a Machine Learning Model of SPH Orthogonal Cutting Process Simulations, Journal of Machine Engineering, 22/1, 111–123, https//doi.org/10.36897/jme/147201.
 
29.
CARL-FREDERIK W., 2011, Rounded Cutting Edges and Their Influence in Machining Titanium, ETH Zurich, https//doi.org/10.3929/ETHZ-A-007134727.
 
30.
RÜTTIMANN N., 2012, Simulation of Metal Cutting Processes Using Meshfree Methods, ETH Zurich, https//doi.org/10.3929/ETHZ-A-010419383.
 
31.
DUCOBU F., ARRAZOLA P.-J., RIVIERE-LORPHEVRE E., FILIPPI E., 2021, On the Selection of an Empirical Material Constitutive Model for the Finite Element Modeling of Ti6Al4V Orthogonal Cutting, Including the Segmented Chip Formation, Int. J. Mater. Form., 14/3, 361–374, https//doi.org/10.1007/s12289-020-01535-2.
 
32.
STORN R., PRICE K., 1997, Differential Evolution – A Simple and Efficient Heuristic for Global Optimization Over Continuous Spaces, Journal of Global Optimization, 11/4, 341–359, https//doi.org/doi: 10.1023/A:1008202821328.
 
33.
DUCOBU F., RIVIERE-LORPHEVRE E., FILIPPI E., 2017, On the Importance of the Choice of the Parameters of the Johnson-Cook Constitutive Model and Their Influence on the Results of a Ti6Al4V Orthogonal Cutting Model, International Journal of Mechanical Sciences, 122, 143–155, 2017.
 
eISSN:2391-8071
ISSN:1895-7595
Journals System - logo
Scroll to top